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Calculating Steady-State Pressure Profiles 
using VACCALC
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Ref. “A Method for Calculating Pressure Profiles in Vacuum Pipes”, 
Sullivan, SLAC, 1993
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VACCALC Input

• Each beampipe element is described by the following 
characteristics:

― Lumped or distributed values.
― Length (m)
― Axial conductance (liters/sec)
― Outgassing rate (nTorr-liters/sec)
― Pumping speed (liters/sec)

• Segment length (∆∆∆∆z) is specified for all elements 

• (10,000 segments max. per pipe).
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Sample VACCALC Input File

Model of LCLS Undulator Beam Pipe

0.005
2 Segments
First Segment

0.00     0.00     1     2     LIN     20 
Pump L 0.1 0.15537 0.00785 1.00
Undulator L 4.9 0.00317 0.39781 0.00
Pump L 0.1 0.15537 0.00838 1.00
Undulator L 4.9 0.00317 0.39781 0.00
Pump L 0.1 0.15537 0.00838 1.00
Undulator L 4.9 0.00317 0.39781 0.00
Pump L 0.1 0.15537 0.00838 1.00
Undulator L 4.9 0.00317 0.39781 0.00
Pump L 0.1 0.15537 0.00838 1.00
Undulator L 4.9 0.00317 0.39781 0.00
Pump L 0.1 0.15537 0.00838 1.00
ENDPIPE
Second Segment

0.00     0.00     2     3     LIN     20
Pump L 0.1 0.15537 0.00785 2.00
Undulator L 4.9 0.00317 0.39781 0.00
Pump L 0.1 0.15537 0.00838 3.00
Undulator L 4.9 0.00317 0.39781 0.00
Pump L 0.1 0.15537 0.00838 4.00
Undulator L 4.9 0.00317 0.39781 0.00
Pump L 0.1 0.15537 0.00838 5.00
Undulator L 4.9 0.00317 0.39781 0.00
Pump L 0.1 0.15537 0.00838 1.00
ENDPIPE

Pumping Speed

Conductance

Outgassing load
Length

Segment Length
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System Design: Motivation

This effort is undertaken to provide an understanding of the
critical issues (e.g. conductance limiting components, surface
outgassing and leak rates) in order to design the most cost-
effective pumping system.

Simple pumping calculations can lead to over-designing the
pumping system which can escalate the costs for a large
accelerator system.

The goal is to develop a numerical model of the vacuum sys-
tem whether simple or complex.
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System Design . . . Motivation

� The goal is to develop a numerical model of the vacuum system 
whether simple or complex.

� This efforty is undertaken to provide an understanding of the 
critical issues (e.g. conductance limiting components, surface 
outgassing rates and leak rates) in order to design the most cost-
effective pumping system.

� Simple pumping calculations can lead to over-designing the pumping 
system which can escalate the costs for a large accelerator system.
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Designing a system using a numerical model

� In the mid-1990’s, we at LLNL started using numerical modeling to 
design the vacuum systems for the APT RFQ and linac.

� Later we used it to design the vacuum systems for the Spallation
Neutron Source linac.
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Typical features of a numerical model

� Pressure histories are solved for each sub-volume.

� We save the pumpdown history for specific sub-volumes of interest.

� We can employ separate time-dependent outgassing rates for pre-
and post-conditioned surfaces.

� We can employ pressure-dependent pump speeds.

� We can do parametric studies of pump speeds and pump distribution,

� We can even run partial-pressure cases.
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Simple example: distributed pumping
along a beam tube

1 2 3 4 5 6 7 8 9 10 11 12 13

15

Ca
Cb Cc Cd

C0

60 meters

CTICT-81500 lps cryopump

VarianVacIon Plus 300
noble diode ion pump

CT
tube,
each
pump

Ce Cf Cg Ch C i C j Ck
Cl

Cm
Cn

14

16
Cp

17 C0

18
Cp

19 C0

20
Cp

20 sub-volumes interconnected with 16 conductancesCa -C p
and pumped with 15 ion pumps and 1 cryo pump
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Complex example:  Pumping using a manifold 
along an rf linac

Model the first twelve cavities with a length of 2.5 meters (per manifold)
and extrapolate results to the full length (10's to 100's of meters)

rf window assembly
with separate
pumping system
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Detail of the first six cavities of an rf linac

riser to rfwindow
(once every 12 cavities)

Goal: Pump through the coupling cavities and accel cavities to 
maintain the operating pressure of 10-6 Torr within the beam tube

coupling cavity

accel cavity

port to manifold
(bottom ofeach
coupling cavity)
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Internal cavity detail included in the model

Slot between 
coupling cavity 
and accel cavity

Drift tube

End nose

Proton beam Accel gap

Accel cavity
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For twelve cavities, conductances interconnect 83 
sub-volumes (half-symmetry)

coupling 
cavity

coupling 
cavity

accel cavities

gate valve

bridge 
coupler

Ion 
Pump A 

55 l/s
Rough 
300 l/m

Turbo 
70 l/s

Cdt drift 
tube= 21Cdt 

Cag 

Cbe 

Csl 

Cbe 

Csl 

Csl 
Csl, slot 

= 242 Cnp 

Csl Csl Csl 

Cag Cag Cag 

Cag 
accel 
gap 
= 51

Cag Cdt Cdt Cdt Cdt 

Cbe Cbe 
Cbe 
bm.tb. 
& end 
nose 
= 11

Cbe 

Csl 

Cnp 
nipple 
= 70

Cnp 

CtblCtbl
Ctbl, tube &
bellows = 55

Cip, ion 
pump port 
= 130

Cmfion,manifold 
to ion pump = 293

Cm-between 
manifold thirds

manifold 
left side

manifold 
center

Cmfturbo, manifold 
to turbo = 293

Cip, turbo 
pump port 
= 93

81 82

75

432

1

63

62

50

5

876

9

64 66 68

51 52 53 54 55

1211
10

13

161514

17

201918

21

242322

25

76

64

77

65

Volume = 46 L 
Area = 67000 cm2
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N ordinary differential equations must be solved simultaneously 
for each time where N = the number of sub-volumes

Gasload balance is the hearty of the numerical model.

where Vn= volume of the nth sub-volume (liters)
Pn = pressure of the nth sub-volume (Torr)
there are N pressures to solve for at each time t (sec)
Qin = leakage or outgassing into volume n 

(Torr-liters/sec) 
Qout = Cnm(Pn-Pm) where m is the adjacent 

sub-volume 
Cnm = your favorite conducatance formula for the 

resistive component between sub-volumes n and m 
(liters/sec) 

or Qout = SpPn where Sp is pressure-dependent pump speed

∑∑∑∑ ∑∑∑∑==== outin
n

n Q - Q  
dt
dPV
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Pressure history for each pump phase is found 
for each of the N sub-volumes.

• Modol solve sfor pressure with N coupled differential equations 
(for each N sub-volumes) during each time for each pumping 
phase:
• Roughing phase from atmospheric pressure down to 50 mTorr
• Turbopumping phase from 50 mTorr to 10-6 Torr
• Ion pumping phase down to base pressure

• Note that the choice of pump type depends on the design and 
operational requirements.

• Note that the final time for the pumpdown history should be 
chosen based on characteristics of outgassing data and 
operational requirements.
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The software tool to solve the model depends on 
the number of sub-volumes and the speed of your 
computer.

• You can build your own solver routine using your favorite 
language and computer.

• You can use a routine like rkfixed from MathCad.
• You can use a routine like NDSolve from Mathmatica.
• We have solved small problems (N<10 sub-volumes) using 

MathCad  on a PC in less than one hour.
• For larger problems, it is worth learning Mathmatica. 

• Example:  N = 83 sub-volumes with tress separate 
pumping phases, the computer processing time was 4.5 min 
on a 266 MHz G3 PowerMac.

• With MathCad, the problem would have taken days due to 
the overhead needed to MathCad more user friendly with 
a cleaner output.
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Model can include multiple time-dependent 
outgassing rates for pre-and post-conditioned 
surfaces.

Rates based on early data from Roth, from
Hot Model tests,* and final specified outgassing goals

10-11

10-10

10-9

10-8

10-7

Outgassing rate
Torr-L/sec/cm2

Time (hrs)

Post-rfConditioning Fit
6.0 x 10-8 exp(-1.5 x10-3 t) +
2.4 x 10-8 exp(-2.6 x10-4 t) +
1.9 x 10-9 exp(-4.5 x 10-5 t) +
1 x 10-10 exp(-1.3 x 10-5 t) +
1  x 10-10 where t = sec

Pre-rfConditioning Fit
6.0 x 10-8 exp(-1.5 x10-3 t) +
2.4 x 10-8 exp(-2.6 x10-4 t) +
2 x 10-9 exp(-6 x 10-5 t) +
6 x 10-10 exp(-7x10-6 t) +
2.5  x 10-9 where t = sec

Roth data

Hot Model
data

10310-3 10-2 10-1 1 10 102

pre-cond.
2.5 x 10-9

post-cond.
1 x 10-10

Note: lower rates
are achievable
after 100 hours.
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Pressure dependence of speed for a Varian 
dry scroll pump

0.01

0.1

1

10

0.001 0.01 0.1 1 10 100 1000

S (L/sec)

Pressure (Torr)

Fitto dots:
S (L/s) = 101 .0605-0.65735/(log(P )+2.6546)

Speed curve forVarian 610 (L/min) dry scroll pump

Dots are from scan
of catalog data

Can turn off
rough pump here
then turn on turbo
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Pressure dependence of a speed for a Varian 
turbomolecular pump

0

40

80

120

10-6 10-5 0.0001 0.001 0.01 0.1 1 10

S (L/sec)

P ressure (Torr)

Fitto dots:
S (L/s) = 36.224exp(-6.1114 P) +
86.3 exp (-76.444 P ) + 5.6545

Speed Curve forVarian Turbo-V150 HT Pump

Dots are from scan
of catalog data

Can turn on
turbo here

Can turn off turbo
around 10-6 or less
to then turn on
ion pumps for long term
uninterrupted use and
minimal maintenance
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Pressure dependence of a speed for a 
Varian Starcell ion pump

40

60

80

100

120

140

10-10 10-9 10-8 10-7 10-6 10-5

Pump
speed
L/sec

Pressure (Torr)

S (l/s) =  385.54 + 278.36 (Sin(Log(P)/2.4085))3

283.44 (Sin(Log(P)/5.1875))4+
29.057 (Sin(Log(P)/1.1116))5 -
24.854 (Sin(Log(P)/-1.4396))6

Fit is good for 5x10-9to 5x10-5Torr

Dots are from scanned graph in catalog
Line is the fit to the dots

An input of constant nominal speed of 150 L/sec
would have predicted an erroneously low pressure

10-4



USPAS June 2002
Vacuum Calculations
Page 21

All ion pumps are not alike

200

220

240

260

280

300

10-10 10-9 10-8 10-7 10-6 10-5

S = - 43.163 -168.65 log(P) + 14.939 log3(P)
+ 3.544 log4(P)+ 0.32817 log5(P)
+ 0.0109 log6(P)

Scanned from
catalog

Pump
speed 
L/sec

Pressure (Torr)

P ump characteristics with nitrogen for 300 L/s conventional PHI ion pump
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System response to a perturbation can be 
studied such as a failed pump.

Beam tube 
pressure 
(10-7 Torr)

Time (seconds)
0 10

1.5

2.0

2.5

3.0

20 30 40
1.0

Pressure increases to 
2.7 x 10 -7Torr in 30 sec
after 1 out of 2 ion pumps fail
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After the optimal system is chosen, then plot the 
entire pressure history.

1-70 lit/sec
turbo on for
10 hours

1-300 DS scroll pump
on for 7.7 min.

Beam
tube 
pressure 
(Torr)

Time (seconds)

0.05 Torr

1.2 x 10-6Torr

1.5 x 10-7Torr

10 102

10-6

10-4

10-2

1

103 104 105

10 2

2-55 lit/sec
ion pumps on
for 90 hours

10-8



 


