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averaging has occurred that the dynamical variables have become Gaussian distributed.
Many random physical processes, because they meet the prerequisites of the central limit
theorem of statistics, exhibit such a time regime.

Consider a random variable v(t), whose probability distribution is W(wv,t), which is
the result of random increments Av (accumulated, say, over time interval At) that are
themselves distibuted with probability distribution (v, Av). This is known as a “random
walk”.

An example with non-trivial dependence on v is

1 (Av + Bv At)?

Av) = —— — d.1
Moments of Av are defined by
/ AV (v, Av) d(Av) =1,
/ Aot (0, Av) d (Av) = (0) = —Bu At (5.1.2)

/ AvZip (v, Av) d (Av) = (02) = 2 At

where the final forms correspond to the example (5.1.1). The time evolution of W (v,t) is

governed by the consistency condition
W (v,t+6t) = / W (v — Auv,t) ¢ (v — Av, Av) d (Av) . (5.1.3)

Performing Taylor series expansions, this relation becomes

oW ow 132W 5

2
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(5.1.4)

Expanding the integrand, dropping terms proportional to Av® and higher, and utilizing
Egs. (5.1.2), yields the so-called “Fokker-Planck” equation;

oW o(W(v)) 10%(W({?)
AR LA A U VA W LV 1.
ot v 2 o (5.1.5)
With the moments of example (5.1.1) this becomes
aW (W v)  O’W
= . .

Some miscellaneous comments concerning the Fokker-Planck equation:
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e When applied to a statistical problem, the word “solve” is not unambiguous.

Often one is satisfied to find just the leading moment (average) though knowing
the next moment (r.m.s. deviation) is typically also desireable. But there
are many other properties, such as correlations, that may also be needed, the
most ambitious being the detailed probability distribution. If one knows the
probability distribution, it is straightforward to calculate the leading moments,
but the converse is not true. Since the Fokker-Planck equation is satisfied by the
probability distribution W it is, in principle, an extremely powerful expression
of the statistical problem.

Since the F-P equation is a partial differential equation (in one more variable
as there are independent variables) its analytic solution is difficult. It may
however be subject to numerical analysis.

Other statistical methods, such as stochastic differential equations, can some-
times be formulated to give weaker information, such as low order moments,
directly.

In its full generality, the Fokker-Planck equation describes the evolution of
a system from arbitrary initial conditions to its eventual equilibrium state.
Typically it is the equilibrium distribution that is actually sought and, in that
case, setting OW/0t = 0 results in a much more manageable equation. This
is probably the main use of the F-P equation. Since the right hand side of
the F-K consists of a linear operator operating on W, eigenfunction expansion
methods are effective.

Because the F-P equation is so powerful, its derivation depends on all statisti-
cal properties of the stochastic sources. This makes the valid derivation of the
F-P equation very difficult in general. The derivation in the section has been
as simple as it is only because of the special assumptions that are implicitly
present in Eq. (5.1.3). The probability of transition depends only on the in-
stantaneous state of the system, independent of the past. Processes satisfying
this assumption are called Markov processes. Certain statistical methods, such
as correlation functions, are introduced partly for the purpose of deriving the

F-P equation appropriate for stochastic problems.
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e Yet another weakness of the F-P equation is that its has been truncated after
second derivatives. This may be a good approximation in many cases, but is

unlikely to be any better than that.

The various calculations of distributions described in previous sections have been based
on arguments and averagings which, though physically well motivated, were rather ad
hoc. They involved calculating the statistical properties of random functions that depend
on other random functions. One purpose for the discussion of stochastic physics in this
chapter is that a rather powerful mathematical formalism based on “stochastic differential
equations” has been developed for performing such calculations. We therefore proceed in
this direction.

Another way of studying the distribution of v is to say that v satisfies the following

stochastic differential equation or “Langevin equation”,

dv
Yo Bt A . (5.0.7)

where A(t) is a random function (whose statistical properties are assumed to be known).
v acquires random features By virtue of its satisfying this equation containing a random
term, itself v acquires random features. If, for example, v were to stand for the velocity of
a particle of mass m, A(t)/m would be a random force acting on the particle. The term
—p v, due, for example, to viscous drag, is determinative, not random.

Though A(t) is assumed to fluctuate rapidly, its properties cannot be arbitrary if
the motion it causes is to be physically realistic. Letting vy be an initial particle speed,

Eq. (5.1.7) can be re-expressed as an integral equation

t

v—uvge Pt =¢e Bt / eft A(t) dt’ . (5.1.8)
0

Let us break up the range of that integral into a sum of uniform time intervals of length At

assumed to be sufficiently short that all functions except A(t') can be treated as constant

over time intervals of this length;
) (F+1)At
e PN elint / At dt' . (5.1.9)
; jAL

The integral in this expansion is (except for factor m) the impulse Ba; delivered to the

particle during the time interval;

t+At
Bat (t) = /t At dt'. (5.1.10)



104 Statistical Methods

At Bag(t) is a “smoothed” version of A(t), with the factor At being free, and somewhat

arbitrary. Expressed in terms of Ba¢, Eq. (5.1.8) becomes

v—vge Pt =Y " AT By, (5.1.11)
j

In words, the deviation from where the particle would be in the absence of random force is
a sum of impulses suffered, but with each derated by the time since it occurred. For g =0
the formula amounts to dissipationless conservation of momentum , but with the built-in
assumption that the impulses have no systematic dependence on t or v. “Solving” the
stochastic equation amounts to imferring statistical properties of v from known statistical
properties of A, or now B, and Eq. (5.1.11) represents substantial progress. For example,
we can equate the variance (square of standard deviation) of left and right sides of the
equation. To do this we use the rule that the variance of a sum is the sum of variances.
This variance would be infinite in the special case S = 0, because of the infinite sum. But,
for B > 0, the exponential factor damps the importance of fluctuations that occurred in

the distant past. Quantitatively, using the abbreviation U%At = var[Ba¢|
. 2 . 2
var |3 P00 g, | = §7 ~H0-is07 g
j J

J
N /°° o (_ (\/5/3)272> . (5.1.12)
0
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For large time, the left hand side of Eq. (5.1.11) approaches v which, according to statistical

mechanics, should be temperature 7', Maxwell-distributed;

2/2
W (v, t;vp) 2o % exp (_m]:T/ ) , (5.1.13)

independent of vy. According to this,

kT

— (5.1.14)

(v?) = o2 = var [v]

To be consistent with this result, combining Eqgs. (5.1.12) and (5.1.14) then yields

26kT At
(BX)) = 0B, = — (5.1.15)
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and the result that a distribution function for Ba; leading to distribution (5.1.13) is

! B3,
/2r 2PRT A m) T (_2(2BkTAt/m)> : (5.1.16)

Chandrasekar proves this result in greater generality and with, perhaps, more rigor than

w (BAt) =

has been exhibited here. The leading moments of this distribution are

(Bar) =0, (BX,) = % : (5.1.17)

The two approaches (random walk and Langevin) can be reconciled (for the special

example discussed so far.) The Langevin equation has been approximated by
Av=—pvAt+ Bp; . (5.1.18)

Identifying w(Ba¢) in Eq. (5.1.16) with ¢ (v, Av) in Eq. (5.1.1), and using Eq. (5.1.18), the

processes will be equivalent if
BET At

m

. (5.1.19)

In preparation for exhibiting a close relationship between Brownian motion phenom-
ena and quantum fluctuation electron beam phenomena, several comments can be made

concerning this result:

e Eq. (5.1.15) is an example of a “fluctuation/dissipation” relation. This equa-
tion relates the “noise strength” op and the “damping strength” [ required for
the phenomenon to be consistent with statistical thermodynamics. The tem-
perature T is implicated in this relation. The equilibrium conditions represent
a compromise between fluctuation and damping.

e With rapidly oscillatory, or short pulse, forces it is the the impulse integral Ba;
that is more directly applicable than the instantaneous force A(t).

e The ultimate distributions are largely independent of the detailed force varia-
tion, provided the time interval At can be chosen long enough to average over
many noise pulses yet short compared to times over which v changes apprecia-
bly. Noise satisfying these requirements is known as “white noise.”

e If the noise consists of disjoint pulses, it is only their rate and their r.m.s.

strength that affect the ultimate distribution.
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5.2. Statistical Properties of Systems of Random Points

A “system of random points (in time)” consists of random points ¢;, having average rate
N1 points per second. (The ordering of indices j is unrelated to the chronological order
of arrival of the points.) If, as we assume, the times ¢; are uncorrelated, it is a “Poisson
system”. During a time interval T' the expected number of points is N7, but the actual
number of arrivals, call it K, will be Poisson distributed. The probability Pg of exactly
K arrivals is

M) —NIT

Py =t

i (5.2.1)

This probability distribution has moments

Y K'Pe=1, m=Y K'Pg=MT, my=)Y_ K>Pgx=MT+MT)>*.
(5.2.2)
In spite of the pulse-like nature of such systems, the field £(¢) describing some phe-
nomenon under study, that differs appreciably from zero only during time intervals close
to one of the random points can also be thought of as a random function of time, or as
a “random process”. (Examples are molecular force F'(¢) or synchrotron radiation power
P(t).) The values of £(t) are almost zero most of the time, but occasionally they become
large. Given many independent copies of the same process &1, &, &3, ..., their values
&1(t1), &(t1), &3(t1), - .., at a particular time ¢; are random variables for which averages

and r.m.s. values can be determined

By (t) = (€ (1)) = lim S FE ) F e H o (t)
(€ (t1)) = lim &8 () + &5 () + ...+ & (1) 7 (5.2.3)

of = ke = (€~ (9)) .
These quantities are shown as potentially dependent on time ¢; but we will mainly be
concerned with “stationary processes” for which these moment parameters are constant.
We then define m = k1, k = ko.

From two random variables &; and & one can form the “cross correlation”

K [&1, &) = (61, &) — (&) (&) - (5.2.4)

In particular, the two random variables can be the values of random process £(t) at times

t and ¢t + 7. Abbreviating these values by ¢ and &, and assuming their correlation is
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independent of ¢, we define “correlation function” ke (7) byJr
ke (1) =KI[¢,&] . which implies ke (—7) = ke (1) and of = ke (0) . (5.2.5)

Digression concerning characteristic functions. I insert here material that will be
needed later on, but recommend that it be skipped right over. From w(¢, t), the probability
distribution of ¢ at time ¢, one defines the “characteristic function”, which is another name

for Fourier transform;

O (ust) = (€D — / w(E:t) e de (5.2.6)

For the joint probability distribution, w(&1, &2;t1,t2), of the two variables, £(¢1) and &(t2),

the characteristic function is
Oy (ur, ug; 1, tp) = (eME)Timtlia)y (5.2.7)

Assuming that all moments are independent of time and (optimistically) supposing that

the Fourier transforms can be approximated by their leading terms, we have

- \2
O (uit) ~ exp (<s>m+var<£> (i) ) ,

T
|2
O2 (u1, ug;t1,t2) ~ exp (i(€) (u1 + ug)) exp 3 Z K [ (ta) € (ts)] uaug
ta,tg=1

(5.2.8)
The motivation behind these formulas is that, knowing the low order moments of a function
appearing in a stochastic equation one can obtain its Fourier transforms, which will then be
transformed in some way, and then inverted to obtain some desired probability distribution.
The mean (£) and the correlation function k¢ (1) = K[¢, &), appearing in O2, are the leading
players in this game. This is how Fokker-Planck equations can be derived. This ends the
digression.
The Brownian motion and photon emission processes both have the property that the

value at time ¢; within one pulse, say Fj(t1), correlates with the value Fj(t2) within the

T The term “correlation function” seems misleading to me. If there are no stochastic forces the value
&(t + 1) differs neglibly from £(¢) for small 7, i.e. it “correlates” perfectly. The non-vanishing of k¢ (7)
implies the loss of correlation in this sense.
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same pulse at another time, but not with any value of any other pulse. A random function
with these properties is

It)=Y F(t—ty) Zed d(t—ty) , (5.2.9)

k k

where the t;, are random times, occurring with average rate Nj. In this final expression
the “pulse-like” function represents the charge distribution of a point electron of charge
e and I(t) is the current passing a fixed point, due to randomly arriving electrons. For
cases in which exactly K pulses occur during a time interval of length T', long compared

to pulse lengths, the average current (If) is

T T T K 00
dty dto dtg K /
I = — — ... — F(t— ~ — F 2.1
(Ix) /0 T /0 T /0 T k§::1 (t —tg) T (t) dt , (5.2.10)

—0o0
where the final expression is indicated as an approximation only to allow for points that

happen to fall close to the ends of the interval. The “end-effect” error from this source

can be made arbitrarily small. Averaging over all possible numbers of arrivals yields
1 [ MDE _vr
I)= Pr (Ig) = = F(t) dt K—— ! 5.2.11
(I) EK K (Ik) T/—oo (t) EK € ( )

Since the final summation can be recognized as the expected number of arrivals in time T,

which is 1T, we obtain

(n="1 /_oo F() dt = A /_oo Ft) dt . (5.2.12)

For the example of the current made up of point electrons, the result is (I) = Nje. The
reason for having followed this, seemingly circular, path, to find this obvious result, is to
practice with a line of reasoning that will next be used to find the correlation function
k(t) = (I,1;) of a current of pulses. As in Eq. (5.2.10), for those cases in which exactly

K pulses occur in time 7', the mean of the product of current and current-delayed is

(I Trer) ii/Tdtl/Td“ /TdtKF(t B F(t+7—tn)  (5.2.13)
o Iier) = - —= ... — — iy —tm 2.
o IT'Jo T o T

k=1 m=1

In all cases for which k¥ = m the integral is approximately

/OOO %F (6) F(t+7) m (5.2.14)
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where, again, the approximation is arbitrarily good except at the ends. In cases for which
k # m the integral is approximately
T T 0o 2
dty, dt., dt
— F(t—t — F(t—ty) ~ — F(t . 5.2.15
[ Era-n [ Grre-w~ ([ Fro) (5.2.15)
where, in the first step, dropping the 7 is equivalent to a negligibly small shift in time ¢.

Counting the terms of both types we obtain

oo o) 2
<1K1KT>:5/0 F () F(t+7) dt+£z_1)</ F ) dt) . (5.2.16)

T T —c0
To complete the calculation as in Eq. (5.2.11), we sum over values of K, weighting each

average with P,

m

00 00 2
(IIT>:?1/0 F(t)F(t+r)dt+%(/_ F(t)dt) . (5.2.17)

Defining the correlation function as in Eq. (5.2.5) we obtain
o0
K[I,I.]=({II;) - (I)Z =M / F(t)F(t+r)dt, (5.2.18)
0

where the cancellation of all but the surviving term follows from Egs. (5.2.2).
For the special case given by the final form of Eq. (5.2.9), I(t) = e, 6(t — t), this

result becomes
k(I,7)=KI[I,I] ="M / 5(t) 6 (t+7) dt =e2N1d (1) . (5.2.19)
0

The process is said to be “d-correlated”. The essential parameter of the process is the
product e?Ai. In this limit, according to Formula Eq. (5.2.5), 0% = k(I,0) has become
infinite, and hence unphysical. The problem is that the frequency spectrum of I extends
to infinity. (Infinite bandwidth.) This may or may not be important, depending on the
use to which the correlation function is put. Subsequent averaging over time or filtering
of high frequencies could restore feasible behavior.

Within the formalism already described in this section, for any valid physical system,
the function F'(¢ — t;) would be less singular, and the result of evaluating the integral in
Eq. (5.2.18) would replace the factor 6(7) in Eq. (5.2.19) by a less singular function. For

example, approximating the §-function by a Gaussian yields

e2 N —72
k ([, T) = \/Q_T(ljt exXp <?‘_2> 5 (5220)
t
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which now has two essential parameters.
Can this process consisting of random points be cast into a form resembling the random
walk discussed earlier? As it stands the answer is “no”, because all pulses have the same

polarity.

5.3. Nonidentical, Bipolar, Short Pulses, Random in Time

The only difference between the system of random points just discussed and either the
Brownian motion or synchrotron radiation processes, is that the pulse amplitude (analo-
gous to the coefficient e) is also random for those processes. Continuing with the example
of a current made up of random charges, let us allow unequal charges, of either sign, start-
ing with just two, say e; and es, occurring with rates N1 and ANs. (Elsewhere in these
notes the subscript 1 on N7 indicates unit time interval. This index is being comandeered
only temporarily for the present discussion.) It is possible to distinguish the currents I
and I corresponding to charges e; and ez, and the formulas of the previous section apply
to these currents separately. But we wish to find the statistical properties of I = I1 + Is.

The mean current is

(I) = (h) + (I2) = exN1 + e2Ny (5.3.1)
which vanishes if e;t N7 = —eaN5. The correlation function is

k(I,7) = (I + L) (I1r + I;)) — (I + I5)”
k (11,7') +k (IQ,T) + <[1 IQT> + <IQ [lr> — 2<[1> <IQ> (532)
k(Il,T)—}-k(IQ,T) .

Let us apply the latter formula to a current consisting of randomly arriving delta functions;
T()=> e1d(t—tr)+ > e20(t—ty,) . (5.3.3)
kl k‘2

We obtain
(I) = e1 N1+ ea Ny
k(I,7)= (eSN1+e3N3) 6 () .

These formulas can be generalized to cover the case of charges that can take on a continuum

(5.3.4)

of values, with N ne(e) de = (dN1/de) de being the rate of charges in the range e to e+ de.
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We obtain

I= Z€k5(t—tk) ,
k
(I = ./\/1/0 ene (e) de = N1 (e, (5.3.5)

k(I,7)=06(7) Nl/ooo e’ ne (€) de = 6 (1) N1 (€2)e .

Here the notation (). indicates averaging over the distribution of possible charges, which
has to be distinguished from () which indicates averaging over arrival times.

These formulas are directly applicable to the random emission of photons by circulating
electrons. Of course e has to be identified as photon energy u, and I as radiated power.
These formulas are then directly comparable to Eqgs. (4.2.7), which gives actual numerical
values for the stochastic parameters, (e). and (e?)., in terms of critical energy ., which is a
function of particle energy and local magnetic field. It is significant, and essentially simpler
than might have been feared a priori, that all stochastic properties are parameterized by

just two parameters.

5.4. Fokker-Planck Equation Derived From Stochastic Differen-
tial Equation

Can this process consisting of random points be cast into a form resembling the random
walk discussed earlier? After introducing the averaging interval At, the randomness in
the Langevin approach became parameterized by a single parameter, J%At, (value given in
Eq. (5.1.15).) If the assumptions needed to validate this introduction of At are satisfied
by the system of random points, i.e. N7At >> 1, the same parameterization should be
applicable.

Basically we are faced with “integrating” the stochastic differential equation
t
Q=1I(), or Q:Q0+/ I(t)dt", (5.4.1)
0
with I and its low order correlation functions given by Egs. (5.3.5). We assume that all
higher order moments vanish. Integrating the equation amounts to finding the probability
distribution of Q(t) and, in particular, its standard deviation at t = At.
The basic idea is that we know the moments of I and, using the equation, can figure

out the moments of () and, from them, the probability distribution of (). The derivation
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will be purely formal and heuristic. Increments to ) over time 7 are given by

t+1
Q-—Q :/ I(t) dt". (5.4.2)
t
Define moments of these increments by m1 = (Q, — Q), and ma = ((Q, — Q)?), and, from

them, cumulants by k1 = my, and ky = mg — m%. All increase linearly with 7 for small 7.

In particular

k1 (Q) = </tt+T I(tl) dt1> = /t+T kI,l (tl) dt1

¢
t+1 t+1
ko (Q) = /t /t kro (t1,t2) diydts

Like the first of these equations, the second follows because the averages of integrals are

(5.4.3)

equal to the integrals of the averages. Using Eq. (5.3.5) we obtain
Q) =O71+..., k(@Q) =M <€2>e5(7') T4+ ... (5.4.4)

Unfortunately it seems to be necessary to use the previously introduced characteristic

function. If w(I) is the probability distribution of I, then its characteristic function is

Or (u) = / e (I) dI (5.4.5)
i.e. ©r = F(w), the Fourier transform. Conversely, then
w(l)= %/ e O (u) du . (5.4.6)
and, as Eq. (5.2.6) we approximate the characteristic function by its leading moments
© (u;t) = exp (kl (Q) — k2 (Q) Z—? ) . (5.4.7)
Differentiating with respect to ¢ yields
2
6 = <% - % %) e (5.4.8)
The probability distribution of @ — Qg is given by a formula analogous to Eq. (5.4.6),
w(Q — Qo,t) = % / e~ Q=Q0) 0 (u, 1) du . (5.4.9)

Differentiating this with respect to ¢ and substituting from Eq. (5.4.8) yields

w =

2 .
k—f / (iu)® e~ "(Q@=Co) Og (u,t) du
S.

. (5.4.10)

(=)°; O'w
p st 77 0Qs

This has illustrated how the Fokker-Planck equation is obtained from the correlation

(]

functions. (There may be a factor of 2 missing somewhere.)
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Chapter 6.
Undulator Radiation

6.1. Introduction

A fundamental parameter characterizing an undulator (or wiggler) is K, where K /v is the
maximum angle of an electron passing through the device. Initially in this chapter the
radiation into the lowest (or fundamental) interference maximum from an undulator will
be calculated. This corresponds to the case K << 1. There will be occasional references
to Jackson?, as well as to Kim.* The word “frequency” (or its corresponding wavelength)
seems most apt when discussing interference of X-rays, while the word “energy” seems
most apt when discussing the detection of individual X-ray photons. Of course the Planck
formula guarantees the essential equivalence (except for units) of frequency and energy,
and the two terms will be used interchangeably.

By increasing K, high order diffraction maxima can be produced from the undulator
that extend the produced spectrum to high energy, but the resulting beam has (undesir-
ably) high power relative to the flux of useful X-rays. Making the undulator period short
can concentrate the beam power in the useful spectral range, but a magnetic undulator
with ideal radiation properties usually has a gap height too small for satisfactory opera-
tion at existing storage rings. These issues are discussed in chapter 7. Another (futuristic)
approach to overcoming the problems is proposed in chapter 8 where the possibility is ex-
plored of replacing the magnetic undulator field by an electromagnetic wave, propagating
in a waveguide that serves also as the accelerator vacuum pipe. This chapter discusses
features that apply to any undulator.

There is a fairly narrow band of energies that is ideal for X-ray diffraction. The band
is limited on the high energy side by difficulty in making optical elements in that range, by
excessive heating, by long term radiation damage, and by unwelcome backgrounds. The low
energy limit is due to excessive attenuation in vacuum windows, protective covers and thick
samples—the attenuation length of few keV photons is so short as to cause unacceptable
attenuation. But, because of the extremely rapid energy dependence of attenuation length,

a factor of ten increase in energy largely overcomes this problem. One therefore seeks a
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photon beam centered on, say, £, = 12.4 keV,Jr as brilliant as possible, consistent with
being as monochromatic as possible.

The qualitative idea behind undulator radiation is familiar from the pattern produced
by an optical diffraction grating, having multiple slits. Individual slits that are extremely
thin and closely spaced produce single slit diffraction patterns that are very broad in angle
and very nearly superimposed. As a result there is interference, which causes angular
maxima that are narrow relative to their separation. The angular widths of the maxima
are inversely proportional to the number of slits and, instead of being spread more or less
uniformly in angle, the energy getting through the slits is concentrated in these maxima.

The primary element of a conventional undulator is a magnet having many, say, 2N,
magnetic poles, alternately north and south, with period A,,. The trajectory of an electron
through this magnet oscillates transversely about a straight central line, and this trans-
verse acceleration of the electron results in synchrotron radiation. Though the radiation
from different electrons is incoherent, the waves emitted from the same electron in differ-
ent deflections interfere coherently. The fundamental interference maximum occurs when
(because of the electron’s speed deficit relative to ¢) the electron lags the radiated field
by exactly one wavelength in passing through one period of the undulator. (Neglecting

angular dependence and path length excess) this yields a condition

Aledge = 2)\—,; ; (6.1.1)
giving A1 edge, the short wavelength edge of the first order diffraction maximum, in the ideal
limit of undulator operation. For numerical estimates in this chapter the value v = 10%,
corresponding to 5.1 GeV operation, will be assumed. Then the choice A\, = 2cm yields
Atedge = 1.0 A, or about 12.4keV.

It is difficult for A, to be as small as required by Eq. (6.1.1) because of the inevitable
fringing between the poles and a correspondingly too-small gap height requirement. One
can contemplate using higher order interference maxima but, since the electron’s trajectory
through a standard undulator is essentially sinusoidal, the higher orders are extremely weak

unless K > 1.

t The choice of E, = 12.4keV as nominal energy corresponds to a wavelength A; eqge = 14 and to the
(mnemonic) approximation 14 — 12345eV.
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Formula (6.1.1) can also be obtained using an elementary relativistic argument. Un-
dulator “photons” of wavelength A, are foreshortened by a factor v as observed in the
electron rest system, where they are Thomson scattered, more or less isotropically, from
the electron. In the electron rest system these photons are monochromatic but, when they
are observed in the laboratory, their wavelengths are further foreshortened by a factor that
varies from a maximum value of 2+ for perfect backscattering down to a value close to zero
for glancing collision. This picture of the process is described more fully in the last section
of this chapter.

A slightly different (but equivalent) approach is taken by Jackson. Working in the
rest frame of the electron, where the undulator provides a sinusoidally varying transverse
electric field, Jackson evaluates the electron’s response (approximately simple harmonic)
and from that the resulting (more or less isotropic) dipole radiation pattern of (monochro-
matic) photons. To find the laboratory distribution (no longer monochromatic, but with
wavelength one-to-one and monotonically related to laboratory angle) Jackson transforms
individual photons into the laboratory frame. (I think this analysis may be due to others,

5

such as Hoffmann®, originally.)T

f In anticipation of a seemingly contraversial issue, one can observe that N, the number of poles of
the wiggler does not enter into the Hoffmann/Jackson picture. It is therefore not possible for the angular
distribution of the radiated photons to depend on NV,,, either in the electron or laboratory frame. Dependence
on N, enters only because, as viewed in the electron’s frame, the undulator field is switched on for only a
finite time—N,, cycles actually. Expressing the field as a wave packet, its frequency spread is proportional to
1/Ny, and the laboratory X-ray spectrum inherits the effect of this spread. This spreading might be thought
to be relatively insignificant, especially for large N,,, but that would be thoroughly incorrect. No matter
how narrow the energy spread of the X-ray beam, the energy selectivity of the monochrometer preceding
typical X-ray detection apparatus is usually even less. This amplifies the importance of the IV, poles of the
undulator (by, roughly speaking, a factor of N,,), over and above the factor of N, resulting from the fact
that the radiation from every pole is aimed more or less toward the detection apparatus.
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6.2. Semi-Quantitative Treatment of K << 1 Operation

6.2.1. Synchrotron Radiation From a “Short” Deflector

The following treatment of undulators is intended to complement the treatment in Jackson.
It is based entirely on Maxwell’s equations in the laboratory system and makes no explicitly
relativistic arguments. There are several motives for this independent development. One
is to develop and exploit the analogy between undulators and diffraction gratings; for this
it is necessary to represent the undulator as a sequence of 2N, short, alternating-sign,
deflectors, rather than as harmonic oscillation. It is also valuable to have an independent
formulation so that essential results can be cross checked. Another motive is to investigate
certain features of Jackson’s treatment that appear to contradict part of the lore of the
field. I refer here to the “angular narrowing” of the forward peak, making its angular
width proportional to 1/v/Ny, as described initially by Attwood, Halbach, and Kim.6
This feature is (superficially) absent from Jackson’s result. Since this section is concerned
only with deriving analytical expressions with semi-quantitative accuracy, it contains fairly

crude approximations.

In section 6.4 below, a more nearly exact, and far more general, theory will be applied
to undulators having arbitrary K-value. The formulas derived there will superceed all
preceeding formulas at the cost of being rather more formal and mathematical. The
essential feature permitting a more general treatment is that the radiation from a full
rather than a half period will be evaluated by integration. The interference over multiple

periods will still be handled by phasor summation however.

The formalism to be employed has been described in chapter 2. The fundamental
relationship governing synchrotron radiation is Eq. (2.1.2), which relates observation time

t to “retarded time” t,:

R
t=t,+—, (6.2.1)
C

where R is the distance from source point to observation point P, located at angle ¢ above
an arbitrary tangent to the circular orbit. Using Eq. (2.1.14) (or equivalently approximat-

ing formulas from Jackson’ fairly radically) the electric field at P, due to an electron
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traveling in a circle of radius R is

5\ -2
q 4 2 9 2¢v3/R 2
E; (r,t) = ——= |1 T 92 92 — lin) — — lou .
)~ ( st (T ) 2] U=t = U= t)
(6.2.2)

This field is appreciable only for emission directions within a range of vertical angles
|@b|21 /7 about a central peak and for a correspondingly short time interval, centered on
the time ¢ = 0 when the electron’s velocity vector points toward P. The final factor
Ut — tin) — U(t — tout) is a “window function”, equal to 1 when the electron is being
deflected and zero otherwise. This factor is needed if the deflection interval is “short”,
L < 2R/~, which will be the case for small K. Then, even though the true longitudinal
field dependence is sinusoidal, the deflection from each half period will be treated as a
short impulse.

Three important approximations have been made in obtaining Eq. (6.2.2). Fortunately,
the least-controlled of these approximations, namely dropping a term proportional to t,?: in
the relation between retarded time ¢, and observation time ¢, is valid for short magnets.
This is because, being cubic, the excess length of a curved path in a short magnet is even
less important than in a long magnet, relative to the effects of vertical angle and electron
speed deficit. Another approximation in Eq. (6.2.2) amounts to having neglected vertically
polarized radiation altogether. For “in-plane” radiation this is an excellent approximation,
but the integrated, vertically polarized intensity can be something like 10 or 20% of the to-
tal intensity. The same approximation causes Eq. (6.2.2) to over-estimate the horizontally
polarized intensity by a similar amount.

I will be prepared to make an even more extreme approximation, that will be valid in

“window function” is non-vanishing for a time so

the pure undulator regime. Suppose the
short that the angle subtended by the electron’s velocity vector is small compared to .
Then, in Eq. (6.2.2), we can make the replacement
2
2cy3/R
2 12 2 2 92
— ] tT =Y 6.2.3
7¢+(1+72¢2> ol (6.2.3)
where 9 is the polar angle relative to the beam axis. The basis of this approximation is

that, with the electron’s direction being treated as constant, the horizontal and vertical

angles can be added quadratically, as in Eq. (6.2.3) to give the polar angle, and the
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retarded time correction becomes azimuthally symmetric. Since this approximation is
rather drastic, it should be applied only when strictly necessary. (It will be useful when
discussing the angular width of the forward peak produced by a multiperiod undulator in
the pure undulator limit.)

The magnetic field of an undulator has the form B(z)y, where B(z) is periodic with

period A,. The equation of motion in this field, of a particle whose orbit lies in the z, z

plane is
d . . N N on
my— (VpX +v,2) = ¢B (2) (VaX + v,2) Xy, (6.2.4)
which yields
d —qB d B
dve _ —B), odve_aB) - (6.2.5)
dt mry dt mry

The constancy of «, or of v2, can be expressed as vydv, + v,dv, = 0, which follows from

these equations. By using z instead of ¢ as independent variable, Egs. (6.2.5) become

dv,  —qB(2) d_vz _ 2¢B ()

z

— = : 6.2.6
dz my | dz my v ( )

Integrating the first of these, with the origin placed at a position zg where v;(zp) = vz0,

yields
q ¢ / / 2 2 2
= - — B d =v° — . 6.2.7
Vg = Uz0 mey /ZO (z ) 2, Uy =0 Vg ( )

B S BN

)\W )\W

Figure 6.2.1: The electron orbit through the undulator is treated as a
sequence of impulses, each bending through 20. In the “ideal undulator
limit”, © = K/vy << 1/7, i.e. small compared to the half-angle of a cone
containing most of the synchrotron radiation.

In practical wigglers the magnetic profile varies from “square saw-tooth” for large A,

to essentially sinusoidal for small A,,. The undulator parameter K is traditionally defined
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in the latter limit, and related to the peak magnetic field By. Then performing the integral

in Eq. (6.2.7) over a half-period in which the field is positive yields

2K A Aw 2 By A
0="=" © pites o K="202% 9348 [T Ay [m].  (6.2.8)
¥ c mcery 2w me 2T

One reason K is such a useful parameter is that it is independent of electron energy. The
K value of a given undulator remains constant as the machine energy changes, or even if
the undulator is moved from one storage ring to another.

It will simplify the calculations (especially in cases where the total undulator length
is comparable with the distance to the observation point) if we can suppose that the
deflecting element is “very short”, in the sense explained above. In fact, as well as being
short, to avoid the need for step functions, the deflecting field can be approximated as

having Gaussian longitudinal profile such that the inverse bending radius is given by]L

1 —ie __ZZ (6.2.9)
R(z2) Re P\202)° -

In passing one quarter of a wiggler period, an electron’s angular deflection is

1 o0 —22 T O K¢
0=— —— ldz=,/= =% =" 6.2.10
Ry /0 exp (2‘7§> ‘ \/ng Y ’ ( )

where the “effective wiggler strength parameter” K. has been introduced to facilitate

comparison with magnetic undulators for which the maximum orbit angle relative to
the undulator center line is traditionally defined as K/v. Though K¢ is approximately
equal to K, they are logically not identical, (in fact, with o, = A, /(27), it follows from
Eq. (6.2.10) that Keg ~ \/7/2 K) but we will not distinguish between these definitions

for the time being. For reference, a sinusoidal orbit having maximum slope K /v is

_ M K o 27 2 , 1 _2rK cos (2mz/ Ay) (6.2.11)

2r v A B A v (14 K2sin? (2m2/00)) "

where the latter relation (presumably more accurate than Eq. (6.2.9)) is obtained from a

T

standard formula for curvature. This curve can be matched approximately by choosing

R,, and o, appropriately, using the approximation

sinz &~ — i (—1) exp (— (z+ (2 + 1)”/2)2> . (6.2.12)

2

1=—00

T What with fringe fields bein inevitable, treating the field shape of a short magnet as Gaussian could
g g g g
provide an accurate approximation, but we are intending to apply these formulas to a sinusoidal deflection
field.
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This is illustrated in Fig. 6.2.2, and the parameters are related by

Aw

0, = — .
27

(6.2.13)

For our nominal 12.4keV energy, o, = 1/7cm.

1 N //' N
exp -(X-;@Q**Z/Z)-e P(-(x-3*1.571)%*2/2) ——
0.8 | S —
exp(-(x-1.571)**2/2) '
0-6 \ -exp(-(x-3*1.571)**2/2)
0.2 \
0 — \ )
-0.2 | / \
04 1 : \
06 [\ /
0.8 [ ‘~ \/
-1 \

Figure 6.2.2: Plot illustrating a sinusoid matched by a series of alternate
sign Gaussians, of which only two are shown. See key in upper right for an-
alytic forms. The standard deviations are related to undulator wavelength
by 2mo, = Ay in order to match curvatures at the peaks. Though the true
trajectory is sinusoidal, radiation integrals will be based on the Gaussian
pulses, so radiation deficiency or excess from the tail regions will require
(modest) correction.

With this (somewhat unconventional) approximation, the ends of the undulator can
be represented by simply truncating the sum in Eq. (6.2.12). Also, after having sliced the
undulator longitudinally, coherent superposition can be handled by the vector addition
of phasors, one per deflection arc, or 2/V,, in all. By using a Gaussian shape, the artifi-
cial high frequency components that would accompany using truncated half-sinusoids are
largely suppressed. For long undulators it may be necessary to incorporate longitudinal

dependency by making the phasor magnitude depend on longitudinal position.
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According to Sands® the energy dissipated per unit length in a region with bending

radius Ry is given by
@ B q2,y4
dz 67T60R(2) '

This is sometimes known as “Schott’s formula”, though it is due to Liénard. The energy

(6.2.14)

U; radiated by an electron in traversing our thin element is therefore given by

2.4 00 2 2.4
ay —Z L ¢y o
Uj=——+ — ) dz=—+ — . 6.2.15
! 6meg R, /_oo P ( o2 ) ¢ 67 € R2 ( )

This can be compared to the more accurate result obtained using the second of Egs. (6.2.11);

U - ?v* 2r K? 5 /)‘w/4 cos? (2m2/Ay) p (27rz>
- i
6meo Aw v2 " Jo (14 K2sin? (212/A,))° \ A

) 4 (6.2.16)
™ qY Oz 4

= — — + 0O (K*) ,
24 € R%) + ( )

where Ay, has been replaced using Eq. (6.2.13), and the last of Egs. (6.2.10) has been used.
Since (1/6+/m)/(m/24) = 0.72 our formulas will underestimate the total energy radiated
by this factor (which is comparable to the over-estimate built into Eq. (6.2.2).) This
defect could be rectified by altering the definition of R, or o, but I prefer to maintain the
definitions given so far. Also, to permit working in terms of familiar quantities, U; can
be expressed as a fraction of Uy (the energy radiated as an electron travels in a complete

circle of radius RO)Jr

g L Reos 1 UpRy o 1 C,E! <K>2
] Yolto g2 1 Cole

Toy/r RL VTR o, T B,/ 2 \y

(6.2.17)
The essential qualitative feature of this formula is that, with undulator period held fixed,
the radiation comes in 2V, pulses of energy, each with energy given by Eq. (6.2.17). All

that remains is to determine how this energy is distributed in direction and wavelength.

t Eq. (6.2.14) gives the energy radiated as a 5.1 Gev electron travels in a complete circle of radius Ry =
89m, to be Uy = 0.67MeV. Numerical estimates can be scaled to Uy. Though this is artificial, it has
mnemonic value, since it relates quantities to that feature of synchrotron radiation which imposes itself most
emphatically upon the operation of storage rings—the average energy loss. For accurate calculation one
should use UpRy = C E?, where C, = 0.885 x 107* m/GeV?3; this formula gives Uy Ry in units of m-GeV.
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6.2.2. Spectral Analysis of the Single Pole Radiation

The orbit and detection point P geometry is illustrated in Fig. 6.2.3. At t = ¢, = 0
the electron passes O and its velocity vector points toward the origin O’ in the plane of
detection. The detection point P is displaced from O’ by horizontal angle 6 and vertical
angle ¢. The instantaneous radius of curvature is R. The most important difference of
the geometry here, from that of Chapter 2, concerns the placement of the origin O’ in
the detector plane. Now it lies on the undulator centerline extended. In Chapter 2 the
origin O’ lay on a tangent to the circular orbit, at arbitrarily chosen angle 65, and the
observation point P lay directly above O’, subtending angle ¢ at O. Now the detector
point P subtends vertical angle ¢ and horizontal angle 6 at O. So the undulator intensity
depends on both 3 and 6, whereas, for pure circular motion, the intensity depended only

on ¢ and was independent of 6j,.

X detection
plane

electron
orbit

Figure 6.2.3: Orbit geometry and definition of horizontal angle 6 and
vertical angle ¢ locating the detector position P relative to the t =%, =0
orbit position.

A fundamental assumption that will be made initially, and is only valid for K << 1,
is that the electon’s longitudinal position advances at constant speed, z = vt,. For values
of K approaching and exceeding 1 this approximation will have to be improved later on,
especially when it comes to forming the coherent sum of the amplitudes from more than

one pole of the undulator.
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Apart from the fundamental Eq. (6.2.1) relating ¢ and ¢,, the formulas needed from
Chapter 2 are the analogs of Eq. (2.1.12), which gives their functional relationship,

ta~t L+ﬁ—2+ﬁ here 9% = 62 + ¢)? (6.2.18)
i 22T 2 Terz) 0 Y - ’ -
where ¢ is the angle between v and 72\, and Eq. (2.1.4),
dt —~ v (t,)
—=1-R - . 2.1
i R . (6.2.19)
We also had Egs. (2.1.5) and (2.1.6);
B |Rx((R-%)x%) o R x (R x¥) 1
q o — 3 o . pn . ’
IreocR (1—72-%) Ll—R-%dt 1-R-¥ Jret
ret. ’
(6.2.20)

To simplify the triple cross product, let v, stand for the component of v normal to R.

The Fourier transform of E is then given by

E(w,@,w) _ -1 o0 it 1 d v, /c gt
m V21 J—co 1-R-Ydt\1-R-¥ ret.

Cc

) 2 22
—1 [ zwtr(%+%+c—§> d v, /c
e 2y 6r2 ) % J_/ dt,

(6.2.21)

CVer s dty \1-R - ¥
where the integration variable has been changed from ¢ to t,. This integral can be further
simplified using integration by parts to yield
E (w,0 ' o0 1 9 A
(”’q Y)W exp <iwtr <—2 + 24 C—g>> YL, . (6.2.22)
W 2 —00 2’}/ 2 6R C

(In this step the factor dt/dt, has been replaced by 1 — R - v/c. Since Eq. (6.2.18) is only

approximate, so also is this replacement. For undulators with small A,, the integral is
dominated by the small ¢, region where the term c?t2/(6R?) is unimportant. This makes
the approximation especially valid and, in what follows, the &~ will be replaced by =.) For

working out individual components we use the formulas

— 92
. Ul vy,
A —SIn — X + COS — Z,
R R
t t
-Xz—ﬁsinu—kcosﬁ,

R R

V_i:X_(R.X> R%—(sin%—kﬁcosv—}{) }E—wcos%y.

(6.2.23)

H) ol<

o
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It seems to be conventional in the field to call the z-component the “o-mode” and the
y-component the “r-mode”, but I will continue to use x and y. From Eq. (6.2.22) one

obtains

F; (w,0,)) = —— dt, e wt
x ( @b) /_27T47T6()CR /_OO r €XpP ( r <2'YZ 6R2
—iwq o0 cty ) ( < 1 ))
N —— dt +0) e 1wt +
\/27r47reocR " <R(tr) P "\ 2y
1 2t2 v
E w, 0 dt, exp | iwt —.
(,6,9) = V 27r47r606R / r OEP ( " <2’YZ GR2> "R

—iwq Oo

ity <'t<1+'92>>
N ——— exp | iwt, | —5 + — .
V2rdnegcR Joso P "\292 2

Because (for K << 1) the integrals are thoroughly dominated by regions in which vt, << R

(6.2.24)

the trigonometric factors have been approximated by their leading terms, and the cubic
terms in the exponents have been dropped for the same reason. Also, since there has
been nothing in the derivation so far requiring the bending radius R to be independent of
position (i.e. independent of #,) this has been acknowledged by expressing R as R(t,); in

an undulator the spatial variation of R is essential.

One reason for having derived these formulas in detail, rather than adapting them from
Jackson’s Egs. (14.79), has been to justify including the factor 1/R(¢,) in the integrands.
In the integrals of Eq. (6.2.24) the factors # and ¢ are constant, and could be moved
outside the integral signs, but they have been left inside to facilitate comparison of two
modes. A curious feature of the formulas (which is shared by Jackson’s Eq. (14.79), is
that the integrals proportional to 6 and to i) do not vanish in the limit R — co. Though
for practical parameter values these contributions are small compared to the ct,/R(t;)
contribution, this appears to predict radiation even with the undulator turned off. At the

moment I don’t understand this seeming paradox.
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FOURIER TRANSFORM OF SHORT DEFLECTOR FIELD

X*2*exp(-x**2/2) ——
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Figure 6.2.4: Fourier transform (Eq. (6.2.25)) of deflecting force due
to a short Gaussian deflecting element for ¥ = 0. The horizontal axis is
w/ag. According to Eq. (6.2.25), the spectral shape for ¢ # 0 is the same,
provided the horizontal axis is interpreted as w/ay.

Retaining only the dominant mode F, and only its dominant part we obtain

tr exp | ———— | sin (wt (— + —>> dt
/0 " 2 (02/c)’ A2 2 "

-2

w /2 ( ! +192> /Oote p -t sin wt dt
= ——\/— X .
Ry Vm \ 2792 2 0 2 (o /c) ( 192>2

E, (w,?) o iw
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q ~
dmegR Rw

Loy
2y 2
2

w207 —agt?
= aﬁ t e 2 sinwtdt
—w?
= — — — | exp| —5
Rw c2 @ ay P 2a?

(6.2.25)
where a function ay, with dimensions of frequency, has been defined by
ag 292 4ny3c
ay = m where ag = o = )\w . (6226)

The spectrum given by Eq. (6.2.25), with ¢ = 0, is plotted in Fig. 6.2.4. The radiated
power is obtained from the Poynting vector which is proportional to the square of the
function plotted. This gives the radiated power one has “to work with”. As in an optical
diffraction grating, though interference effects can “concentrate” the power into the form
of photons centered on one or more diffraction maxima, such effects cannot alter the total

power.
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We can regard agp as a frequency typical of the radiation from a single deflection of
r.m.s. length o; it can play a role much like w. = (3/2)cy3/ Ry, the “critical frequency”
traditionally defined for synchrotron radiation from bend radius RO.]L The maximum of
the single deflector Fourier transform can be seen to be at 1.45ag. This defines ay to be
a kind of “typical” X-ray frequency at angle 9. It will prove to be significant that the
spectral shape is a universal function of the ratio w/ay. (The extra multiplicative factor
ay causes a further modest angular-dependent modulation of the radiated energy.) The
energy radiated from a single undulator pole is distributed according to

d*Uy 2R? - 2R? q 27 52 \ %t w?

L e ) EEGMD(_E%>

1 q2 2 W w?
22 dmepe ( ) < ) aﬂ 2 P < g)

where the initial factor 2 accounts for restriction of w to positive values. The second

Ey (w)
(6.2.27)

moment of ¥ for fixed w is given by

00 2192
Jo (9% +7%9°) exp ( a2 ) dd 1 a} w?+ 24}
Jo7 (9 +v2093) exp (—w Z;W) g9 7w witaf

0

o2 (w) =

(6.2.28)

As a check on the consistency of our formulas we calculate the total energy radiated

per deflection to be

v = /M/WE
-2 By (-
o? ds2 w?

— o & 2 4 ~—)d
Loc <47T€0R> (Rw02> / a%/ “ exp< a%) “

_3Wm 1 (¢ 2 o2 2 2y2c 3/00 2mddd

4 poe \4me Ryc? o 0 (1+fy2192)3
3 (]2’}’4 Oz

16\/7 e R2
Numerically 3/(16y/7) = 0.1058, not quite the same as 1/(6y/7) = 0.0940, which is the

(6.2.29)

corresponding coefficient of U;. This disagreement is comparable with the inaccuracy of

our other results,

 Because of its stronger dependence on 7 one might be misled into believing that w. corresponds to
a more “Lorentz contracted” and hence shorter wavelength than the wavelength A\g = 2wc¢/ag, but this is
wrong. In fact, the “short magnet effect” make the opposite true in a true undulator. For magnetic wigglers
there is some point to evaluating w. from the peak magnetic field but, for the undulator we are discussing,
we is unrelated to the radiation spectrum.
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Since the intended purpose of the undulator is to produce X-rays, it is important to

estimate typical wavelengths. The wavelength corresponding to ag is

c Aw
Ao =21 & = Ju
0 7Ta0 2727

(6.2.30)
and comparison with Eq. (6.1.1) shows that Ay = Aledge- Of course this is no coincidence,
but neither is it tautological. Ajeqge is a characteristic of the radiation from a full pe-
riodic structure, while )\g is characteristic of the radiation from one half—wiggle.]L With
the wiggler field shape being treated as a sinuisoid with wavelength equal to the wiggler
period the (near) equality of Ag and Ajcqge is assured. The importance of their having
comparable values is that there is a substantial flux of photons having wavelengths capable
of constructive interference with the radiation from all the other “poles” of the wiggler.

Because positive and negative wiggles are being treated independently, the diffraction
maxima occurs at w = nag, where n = 1,3,5,.... (This will be confirmed below.) From
Fig. 6.2.4 one sees that there is appreciable amplitude only up to two or three times ag.
One concludes that the amplitudes of diffraction maxima of order higher than, say, n = 3,
will be negligible (for the case K << 1 being analysed.)

Ao has the remarkable feature of being independent of R,,, the central deflecting radius
of curvature. The first person to emphasize the experimental significance of this feature was
apparently R. Coisson,? Unlike regular arc radiation, the short magnet spectrum extends
to high energies even if the deflection angle is arbitrarily small. (This refers to the spectral
shape; of course the total intensity goes to zero as the deflection angle approaches zero.)
The theory has been amply corroborated at CERN, as part of diagnostics of the SPS, a
400 GeV proton accelerator, R. Bossart et. al,!”

That the wakefield undulator produces high energy X-rays has been established. It re-
mains to be seen how monochromatization occurs and whether sufficiently great intensities

can be obtained to make a useful device.

f In principle the length of half-wiggle sections of a wiggler could be very short compared to the wiggler
g gg gg gg
period. Then we would have A\g << Aj eqge, and high order diffraction maxima would become significant.
The same would be true if the wiggler field shape were more nearly an ideal square wave.
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6.2.3. Coherence From Multiple Deflections

The coherence of amplitudes from different poles of an undulator depend critically on the
average velocity of the electron. The electron’s orbit will otherwise be treated as a straight
line, with longitudinal velocity altered to account for the increased arc length of the actual

(approximately sinusoidal) orbit;

1 o2

v, v
fz\/——(@cossz)zzl—ﬁ—f.

2 (6.2.31)

A single electron is subject to 2V, undulator pulses, of alternating polarity, with each
pulse having r.m.s. (retarded time) duration o,/c. All radiation sources are centered
on the same straight line. Consider a component of the radiation having wavelength A
and direction 9. A reference wavefront is defined to be the plane passing through the
emission point and perpendicular the photon’s direction. As the electron advances the
distance A /2 from one deflection to the next, its travel time is (A, /2)/v;. Meanwhile the
reference wavefront (traveling at the speed of light in the photon’s direction) has traveled a
distance (A, /2)(c/7;). Referring to Fig. 6.2.5, consider another wavefront which is parallel
to the original wavefront, but emerges from the new emission point. The distance of this

wavefront from the first emitter is (A, /2) cos 9 & (Ay/2)(1 — 92/2). The phase difference

between these two wavefronts is

Aw ¢/T; — 1+ 192/2 Aw/ (2’)/2)
w -

Ag (9) =21 = . X (1+ K?/2+~4%9%) . (6.2.32)
successive
C ‘= wavefronts

\ Ay /2 b

\ successive /

deflectors

Figure 6.2.5: Geometry illustrating the condition for interference maxi-
mums observed at vertical angle 9.
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In a “Fraunhofer approximation”, in which all emission at angle ¥ is “focused at
infinity” the condition for the two waves to interfere constructively is that this phase shift

be mn where n is any odd positive integer. That is

Ao/ (272 nay
AMWZ% (L+E?/2+7%0%) , or wy(d)= 1+ K2/2 4202

(6.2.33)

(Values of A\,(0) and wy,(0) with K = 0, n = 1 have previously been denoted Ajeqge and
W1 edge-) According to Eq. (6.2.17), the total energy radiated is proportional to K?. We
see now, that there is a trade-off between intensity and shift to reduced energy. It is
this trade-off that has often pushed beamline designs from the undulator regime into the
wiggler regime, since the desired X-ray energies are only present in harmonics above the
fundamental.

Due to betatron oscillation, the electron’s angle 6., relative to the central axis, though
small, will not be zero, and there is a longer effective deflector spacing, obtained by A, —
Aw/ cosB.. But, because A, appears only as a multiplicative factor in Eq. (6.2.33), this
is a relatively insignificant effect.T For the same reason, though the term K?2/2 gives an
(undesirable) shift to reduced energy, it does not cause the (typically more significant)
energy broabdeningi caused by the 92/2 term, due to finite out-of-plane acceptance of the
detector. To avoid unacceptably large shift of interference maxima it will be necessary to

check a condition such as

1
2y’
that limits the shift to the 10% level. This will be referred to as the “ideal undulator

e < or K <=. (6.2.34)

DN =

condition”. For a conventional magnetic undulator this condition typically corresponds to
a low, and hence easily achievable, magnetic field. It will be comfortably satisfied for any

feasible level of microwave power in a microwave undulator.

course, the angular divergence of the radiated photon beam cannot be less than the angular divergence
tof th lar di f the radiated photon b t be less than th lar di

of the electron beam. This would only be possible if the radiation from different electrons were coherent;
this would be true only at absurdly long wavelengths, as in a free electron laser.

I Because there is a functional relation between production angle and wavelength, the beam brilliance
could, in principle, be infinite, in spite of the “Doppler” spread, since the detection apparatus could be
designed to exploit this correlation. For example, if the beam is shone directly on a crystal, without having
passed through a monochromator of other filter, the program analysing the diffraction pattern could exploit
its full knowledge of the correlation. In practice the detection apparatus will usually sum incoherently over
a finite range of ¥, which will smear the energies and reduce the brilliance.
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In the limit © << 1, from Eq. (6.2.33), the relation between production angle and
frequency of the fundamental n = 1 line is

ao
1+ ~292

This function is plotted in Fig. 6.2.6. Note, from this equation and Eq. (6.2.26), that

w1 (V) |K<<1 = (6.2.35)

the angular dependence of w; (1) (diffraction maximum of the multisource pattern) and of
ay (characteristic frequency of the single source pattern) are the same. This causes the
diffraction maximum to retain its same position relative to the single source spectrum,
independent of 1.

ANGULAR DEPENDENCE OF RESONANT FREQUENCY
1
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0.9
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X = gamma*theta

Figure 6.2.6: Angular dependence wq(9)|gx..;, the frequency of the
fundamental undulator line with K << 1. The horizontal axis is yJ. Some
people refer to this as a “Doppler shift”, based on an analysis in which
the radiation is first evaluated in the rest frame of the electron, and then
transformed to the laboratory frame.

To calculate the multiple source interference pattern we sum the amplitudes from 2N,,
deflectors, using the phasor construction of Fig. 6.2.7. The phase slip per deflection can be
expressed in terms of w by substituting the second of Eqs. (6.2.33) back into Eq. (6.2.32);

=rnv, (6.2.36)

where relative energy variable

(6.2.37)
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has been introduced. In the forward direction, for n = 1, Eq. (6.2.36) yields A¢(0) =
mw/ay, so v is the coordinate along the horizontal axis in Fig. 6.2.4 in this case. Though
v is a fractional energy, it might be better to designate it as v, (9) since it is a fraction of
the energy of the n’th harmonic peak in the energy spectrum viewed at angle ¥). These
dependencies will be suppressed for brevity. A variable that is equivalent to v, but is useful

for expressing dependencies close to a resonance peak, is

— wy, (V)
wp, (9)

Av=v-1="2 (6.2.38)

Figure 6.2.7: Phasor diagram with 2N, arrows to calculate the coherent
sum of waves from 2N, sources, or N, undulator periods. The directions
of alternate phasors are reversed to account for the half period phase shift.
A¢p. = m — A¢p where A¢ is the phase advance per half period of the
undulator. Though 2N,, is necessarily even, the total number of deflections
can actually be odd, as in the figure,

As shown in Fig. 6.2.7, the result of the phasor summation is a “grating amplitude”

sin (2N, (1/2 — Ad/2))

G(2NwaA¢) - sin (W/Q—AQS/Q) 7

(6.2.39)

which will later be squared to obtain an intensity. Though functions resembling G arise in

a variety of multisource situations, its detailed interpretation requires a certain amount of
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care. We will substitute for A¢ from Eq. (6.2.36), and then for v from Eq. (6.2.37);

_ sin(Nym (1 —nv))  sin(Nymnv)  sin (Nymn (14 Av))
G (2N, Ad) = sin (/2 —7mnv/2) icos (tnv/2) icos (rn (1+ Av) /2)

{iw ’I’I,:072747"'

(mnAv/2)
;:iorf(NgﬁnyAu) n—1.3.5 (6240)
sin(mn Av/2) P e

Av—o [ Esin(NymnAv)  n=0,2,4,...
{iQNw% n=1,35,...
The simplification in the last step is applicable only for 7TAv << 1/n, which is to say,
for energies very close to a interference maximum. (It is not necessary to keep track of
the signs more carefully since the result will be squared, and a simpler yet more accurate
formula will be derived later.) From this equation one sees that the only constructive
interference maxima occur for n =1, 3,5, .. ..

For 2N,, = 20, the function G?(20, Aqﬁ)ﬁ%(w, 0) is plotted in Fig. 6.2.8 with, as yet, ar-
bitrary units for the vertical scale. A logarithmic scale is used, to make the third harmonic
peak more visible, and to show that its amplitude is small compared to the fundamental
peak, but the absolute widths of first and third harmonic are the same. This makes the
third three times narrower in relative terms—Ilike a grating spectrometer, the resolution
is better in higher order. The replacement of the true transverse deflection profile by a
Gaussian profile (Eq. (6.2.9)) has caused the higher order peak to be underestimated, but
not by a large factor. No line spreading due to finite vertical acceptance is included in this
spectrum.

The (squared) grating function, as approximated by the last expression in Eq. (6.2.40),
near the n = 1,3,5, ... resonance peaks, is a narrow positive definite function, having area

4Ny /n. Tt is conveniently further approximated by a Dirac delta function or by a Gaussian;

2
G2 (2N, AD) ~ V0 5 (AV) ~ AN2 exp [ —— 27 — (6.2.41)
n 2 (V2 Nyn)

for the Gaussian approximation, the central value has been matched to the central value
and the r.m.s. width og, = 1/(v/27Nyn) has been adjusted to give the correct area. An
alternative definition of “width” is the value of Av at the first diffraction minimum—this
would yield Avyigen = 1/(Nwn). Whatever way it is defined, the relative width of the

energy peak observed at fixed angle is inversely proportional to n and to N,,.
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Figure 6.2.8: FEnergy spectrum for N,, = 10 undulator periods, with
¥ = © = 0. The horizontal axis is w/ay.
Combining Egs. (6.2.27), (6.2.33), and Eq. (6.2.41), and substituting for A, from
Eq. (6.2.30), the distribution of energy radiated by a single electron passing through the
undulator into the n’th harmonic, for n =1, 3,5,..., is given by the following alternative

expressions, of which the first is most accurate, and all assume K << 1;

d?U,  4K%y* ¢ wi(0) w2 (9)\
- - 2N, A

dwd w2 4meyc a%ag exp( a% ) G” (2N, A¢)

or 16 2.2 ¢ n? ( w? (19)>

> Nk exp |~ 0 (Av 6.2.42
a2 e 4dmege (14_,},2192)2 P a% (Av) ( )
1 2 4 2

O%r 6N3)K2 2 4 n exp( n) exp(—(AVﬁan)2> .

72 4dmegc (1+ 72192)2
(For reference, the closest corresponding formula from Jackson, namely his Eq.(14.114),
after various notational changes (which should be checked), becomes
2 2 (1 ~%02)° + 49292 sin?
Ui _ N, K22 Y L-7") +4y i 7 5 (Av) . (6.2.43)
dwdS2 dmege (14 4202)

Exact comparison of this formula with the central equation of (6.2.42) is made difficult by

the fact that it includes dependence on Jackson’s azimuthal angle ¢; and sums over both
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polarization states. Also, inclusion of the K?2/2 terms in Eq. (6.2.42) may not be justified,

since the small K approximation may not have been handled consistently.

6.3. Energy Interval Definitions

An absurdly small fraction of the energy emitted from a storage ring, or even from any one
undulator, actually contributes to any X-ray diffraction exposure. Perhaps the greatest
inefficiency is due to the extremely narrow energy acceptance window of typical detection
apparatus. This makes it important to define, evaluate, and compare various energy
intervals. It is important to distinguish between absolute and relative energy intervals. In
practice it is usually relative energy intervals, ratios of energy width to central energy, that

are most significant.

To calculate either “flux” or “brilliance” it is necessary to integrate d>U,/dwdS}, as
given in Eq. (6.2.42), over an actual detection apparatus. The §-function form can only be
used for apertures that are large compared to the natural spreads. Otherwise, for example,
arbitrarily small aperture could lead to infinite brilliance. Similarly, since the Gaussian
approximation does not convey the true diffraction pattern, it can only be used to estimate

the brilliance unless the aperture size is large compared to diffractive structure.

In spite of this cautionary sentence, there is picture of the forward distribution of pho-
tons, due to Kim, based on a formula very similar to the Gaussian approximation, the last
of Egs. (6.2.42). T find this picture confusing and misleading, but it seems to be popular
with workers in the field, so I will try to construct an analogous picture. Imagine an
apparatus tuned to accept an infinitessimal band of energies centered on nag/(1 + K?/2),
which is the central frequency of the peak, in the forward direction, for the n’th harmonic.
Let us suppose that the apparatus measures production angles with perfect angular reso-
lution, and is used to measure the dependence of radiated power on J. Substituting the
second of Egs. (6.2.33) into Eq. (6.2.38) yields the fractional deviation from resonance of
this detector, at angle ¥, to be

(6.3.1)
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Retaining only the (dominant) final factor of the final version of Eq. (6.2.42), the angular

dependence of energy striking the detector is given by

d*U, 4 qd 2 7’2
dwdQ ~ exp (—T 9 ) where r° = m

NZI (6.3.2)

Since this formula has a “hyper-Gaussian” dependence, with 94 in the exponent, it dis-
agrees with Kim, whose exponent is proportional to 2. Nevertheless we can use it to
“calculate” an angular variance;

[o° 9% exp (—rt9?) dv _ 11
fooo ¥ exp (—r*9*) dv I'(1/2) r?

1+K2/2 1
v2  Nyn'

1
ol = = - (6.3.3)

This agrees with formula Eq.(4.33) of Kim, except the factor 1/ is replaced by 1/4 in his
formula. This discrepancy may be due to slightly different definition of the parameters
and, in any case, constitutes good agreement within the spirit of the approximation. The
same formula appears in “X-Ray Data Handbook”, Berkeley, 1986, and in the Wiede-
mann contribution, “Undulator and Wiggler Radiation”, to the “Handbook of Accelerator
Physics and Engineering”, A. Chao and M. Tigner, editors. See, for example, page 189 of
Wiedemann (or page 4-7, Kim).

The reason I disapprove of this analysis is that it begs to be misinterpreted as showing
that coherence from the N,, undulator poles causes the radiation cone to “narrow” as
N, increases. In fact, if the full energy spread is accepted at every angle, the angular
pattern from the whole undulator is the same as would come from any one of its poles
in isolation. Speaking loosely, the mathematics of this is that a practical experimental
monochrometer is “even narrower than a J-function”. This is to say that, even though it
is usually legitimate to approximate a narrow line whose width is, say, 1%, (typical for
undulators) by a d-function (as in the second of Eqgs. (6.2.42) or Jackson’s Eq. (6.2.43)),
this is not valid for apparatus having acceptance of, say, 0.1%. In the following more
detailed description of actual detection apparatus, it may become understandable how
this misinterpretation of the effect of coherence in the forward direction seems not to have
led to experimental contradictions for present-day (not very large N,,) undulators.

Some of the points that have been raised are illustrated in Fig. 6.3.1 which shows little
parallelograms at the intersections of the narrow, fixed-energy acceptance of a detector

and the radiation bands of the lowest three undulator resononances. In greater detail,



Undulator Radiation 137

the parallelograms are defined by contours of constant photon energy forming two sides
and undulator band edges forming the other sides. At fixed energy, lines from undula-
tor harmonics appear at angles increasing monotonically with n. Single source diffraction
structure (corresponding to G(2N,,, A¢), as defined in Eq. (6.2.39)) is not shown; the effect
of this dependence would be to produce fringes at the edges of the little acceptance paral-
lelograms. The actual pattern observed by the detector would consist of rings; Fig. 6.3.1

just shows the intersections of these rings with one coordinate plane.

FIXED (ENERGY, ENERGY BW AND DELTA THETA) ANNULAR RINGS
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Figure 6.3.1: The photon flux into a detector having fixed central en-
ergy, fixed energy acceptance and full angular acceptance is proportional to
the areas of the little parallelograms whose sides are contours of constant
n resonance (Eq. (6.2.33)) and whose bottoms and tops are contours of
constant photon energy. There is no significance to the solid, broken, etc.
curves other than to correlate with the mathematical form shown in the
key.

The radii of the annular rings increase monotonically with n. If the energy window
were reduced slightly from the value shown, even the n = 1 resonance would give an
annular ring, and if the window were raised the central spot would vanish. The setting
shown, with the energy window centered on the n = 1 resonance, is optimal for achieving
maximum brilliance. It is also the configuration for which Formula (6.3.3) is most nearly

valid. But one sees that the vanishing of dw,, /d¥ at this point complicates the mathematics.
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It would be unreasonable to suppose that, in such a situation, a formula for the variance
(Eq. (6.3.3)) will yield anything better than a semi-quantitative indication of the nature of
the distribution near this point. An equation providing the same qualitative content could
just as well have been derived by finding the intersection of the constant energy line with
the resonator band edge. This amounts to finding the angle 9y, at which the numerator
factor in the last form of Eq. (6.2.42) has fallen by the same amount the numerator factor

is reduced for a typical value Av = 1/(2Nyn);

1

—_— . 6.3.4
4v2Nyn ( )

2
ﬂtyp. -

This is in semiquantitative agreement with Eq. (6.3.3), and with Kim’s Eq.(4.33).

The fractional energy band from an undulator was calculated in the previous section.
Expressed in terms of v, defined in Eq. (6.2.37), the fractional energy band for the n’th
undulator line is —1/(2Nyn) < Av < 1/(2Nyn). There are also other fractional energy

bands that can be introduced, some to be defined and evaluated later:

e Avyom.=0.001 is a nominal fractional spread, which is presumably typical of
X-ray detection apparatus, since terms like “brightness” and “brilliance use it
in their definition.

® AVnionochrom. 18 the fractional energy transmission window of a monochrometer
placed in the beamline upstream of the particular detection apparatus. The
monochrometer acceptance window is assumed to be independent of X-ray
position and angle. For present purposes we will make the (obviously incorrect)
assumption that all apparatus is typical, S0 AVonochrom. and Avpem. will be at
least approximately equal.

e Avcoim. 1S the fractional energy spread defined by a collimator that limits
X-ray angles at the front end of the detection apparatus. In the angle-energy
plane there is (especially for K << 1) a strong correlation between X-ray angle
and energy, but contours of equal angle are not the same as contours of equal
energy so the bands passed by collimator and monochrometer do not match
perfectly. In practice, a collimator will typically define a considerably broader

energy window than does the monochrometer.
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e Avy, = 1/(Nyn) is a fractional energy spread characteristic of the number of
undulator periods N,,, at the n’th harmonic. This is equivalent in spirit, though
not exactly in value, to either of the two widths defined below Eq. (6.2.41).

For undulators of modest length this width will typically be much greater than
AVimonochrom.
The energy spectrum (for N,, = 0o, K << 1, and integrated over production angle) is
shown in Fig. 9.1, from Jackson. Deﬁning]L vy = w/ag, and P to be the total beam power,

Jackson gives the spectrum to be

dP
o= 3P (vy—2v3+203) , for 0<wuy<1. (6.3.5)
vy
(Of course the discontinuous drop to zero at vy = 1 is valid only as N, — oo. For

finite N,, the spectrum at fixed angle falls continuously over a range ~ 1/N,,. Relative
to (6.3.5), the number spectrum acquires a factor of vy and is hence more nearly flat
over the range 0 < vy < 1 than is the curve in Fig. 9.1. (It would be exactly flat if the
distribution were uniform in the electron rest system.) But, for purposes of accounting,
we can count photons as if they all had the full energy and restore appropriate angle and
energy dependencies later. (Certainly this yields an undercount of actual photons, and a
serious overcount of useful photons.) Because of the correlation between energy and angle,
the actual number of useful photons depends on the detailed experimental setup. From

Eq. (6.3.5), the fractional power in the range 1 — Avy < vy < 1 works out to be

AP

As will be explained, it is sensible to first narrow the energy spectrum by collimating the

beam to pick out a central circular cone. From Eq. (6.3.1), close to the forward direction,

\/AVJ

vy l—~29% or Avy=~29%, or U= , (6.3.7)
Y

and the solid angle within this collimation angle is AQ = 792, (The term K?/2, suppressed

to make the next few formulas look simpler, should be restored if K approaches or exceeds

1.) Then the fractional beam power and fractional energy width are related to AQ by
m AP

™
AQeollim. = ? AVJ,collim. = 3—72 ? . (6.3.8)

 The quantities v, defined in Eq. (6.2.37), and v; defined here, though similarly motivated, are not equal,
because vy (J for Jackson) refers w to the peak frequency while v refers w to the resonant frequency at .
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Frequency Spectrum From Undulator
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Figure 6.3.2: Undulator frequency spectrum plots copied (combined and
somewhat garbled) from figures in Jackson, Classical Electrodynamics. The
spectra plotted assume the production angle has been integrated over. The
K = 0 functional form can be read from the key in the upper right corner.
Preceeding the apparatus by a collimator that stops angles greater than
one third of the cone angle of the radiation, would allow only the narrow
energy band above the arrow to be transmitted. The second interference
maximum is shown corresponding to K = 0.5.

By convention the “useful for X-ray physics” fractional energy range is taken to be
Avynom. = 0.001. Eq. (6.3.6) shows therefore, that photons making up only three parts
in one thousand of the beam power in a pure (N, = o0o) undulator beam lie within the
nominal energy bandwidth. The “useful” power flux therefore is therefore less than the
total power by a factor of 300. Corresponding to the nominal energy width we can define

a “nominal collimation angle” ¥,y and a “nominal solid angle” AQy,om.

Dnom. = V0.001/7y ,  AQpem. = 0.0017 /42 . (6.3.9)

Most of the photons at fixed angle lie in the fractional range Av;y,. For N, =~
1000, Avyn, and Avypem, would be equal, and the collimation could be established such
that Avjcollim. = AVjnom. = Avyn,. But most undulators have far fewer periods, so
Avynom. << Avjpy,. Also, in practical setups, Avyy, < Avjcolim., by a conservatively

large factor.
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Bcollim. Bcollim.
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monochrom

Figure 6.3.3: In the vy, 9 plane apertures are defined by monochroma-
tization, by collimation, and by the undulator characteristics (i.e. number
of poles N,,.) For the relative sizes of these apertures suggested in the text
as typical, useful photons populate the shaded region.

The apertures that have been defined are illustrated in Fig. 6.3.3. It is the photons
falling within the shaded region that make up the useful flux. If the relative magnitudes

are as illustrated by this figure, it can be seen that the “useful flux” is proportional to

2

ollim.© Approximating the grating function to be

AVJ,nom.AQcollim. where AQcollim. = 70
uniform within the band Avyy, , and using Eq. (6.3.8), the flux is given (approximately)
in terms of P, the beam power in the fundamental n = 1 line, by

2 P AVJ,nom.

F = 3% AQeollinn. (6.3.10)

Ey Avgy,
The beam brilliance is then given by
Fi 3N,v? P 1
T AVaom AQonim A 7 By m/Breay/Byey
where A = m\/Br€x \/% is the “spot area”. Since P is proportional to N, the brilliance

B

(6.3.11)

is (superficially) proportional to N2. Since, according to Eq. (6.2.17), the total power
radiated from the undulator is proportional to K? there is a low-K regime in which the
brilliance is proportional to K2, but since Egs. (6.3.10) and (6.3.11) are valid only for K <<
1, the range over which this variation holds requires further analysis. These equations also
neglect any contribution to the X-ray angular spread coming from the angular spread of
the electron beam. Therefore, they provide approximate upper limits for the flux and

brilliance.
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6.4. Undulator Radiation For Arbitrary K Values

Since the formulas in this section will eventually have to be evaluated numerically, ap-
proximations will be avoided to the extent possible. Also, at the expense of repetition,
to emphasize the surprisingly small number of steps needed to derive the main result,
intermediate formulas already given in earlier sections will be repeated. In writing this
section I have profited from conversations with, and numerical calculations using MAPLE
by, Lewis Kotredes.

The approach so far has been to represent a single pole by one phasor and to evaluate
the total amplitude as the vector sum of 2/N,, such phasors. We should now note that what
was called the “long magnet condition” in Eq. (2.2.1), namely L > 2R/, in undulator
terminology corresponds to K > 1. As K increases from zero it becomes increasingly less
valid to represent the radiation from a single pole by a single phasor amplitude. Rather,
one should break the entire undulator into sufficiently short intervals, then form their
phasor sum. For large N,, this would be a formidable task, requiring the summation over
large numbers of nearly-canceling quantities.

Because the undulator structure is most naturally specified in terms of z we will even-
tually change the integration variable from ¢, to z. The extreme dependence of ¢t upon ¢,
has been noted previously, and now the dependence of ¢, upon z becomes progressively
more influential as K increases.

For a purely sinusoidal orbit, using Eq. (6.2.7), the velocity components are given by

v v 1 2
- = O cos ky 2, ?Z ~1— 92 g cos® k2 . (6.4.1)

This formula gives v, the correct maximum value, v/c ~ 1 — 1/(272), and the correct
average value as given by Eq. (6.2.31), and corresponds to having chosen the z-origin at a
point where v, is minimum. Inverting the second of Egs. (6.4.1) to give dt,/dz, and then
integrating and setting ¢, = 0 at z = 0, yields

1+ K2/2\ z  (K/v)
Tz)‘*

sin (2ky2) . (6.4.2)

r~ |1
" <+ c 8kwe

This gives the laboratory frame time of arrival of a reference electron at z. Referring again

to Fig. 6.2.3 and dropping factors that are cubic or higher in small quantities, the factors
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governing radiation are
— 92

1 e?
X:E@cosszfc+ 1————cos2sz zZ,
c c 2’72

2 (6.4.3)
-~ V 1 192 @2 2
I—R-E ~ —00 cossz+ﬁ+?+7 cos” ky 2z,
vi_Y_ (72\2> R ~ (© coskyz —0) x — 9y + (—0O cossz+192) zZ.
c c c
Substituting into Eqs. (6.2.19) and using Eq. (6.4.2) yields
d(ct) di 1+K2%/2 92 ©2
(gz) = d—tr = —9@ COS ka + TZ/ + ? + I COS 2k‘wz . (64:4:)

Only the leading term of Eq. (6.4.2) has survived in this formula because it is of order 1
times z/c, making the other term negligible. This means that it has not really been essential
to distinguish between ¢, and z/c. But this does not mean that the phase shift depending
on the longitudinal position of the electron can be neglected. Integrating Eq. (6.4.4) and
requiring ¢t = 0 at z = 0 yields

1 K? 0O . e |
ct = Ew (1 + - + ,y2q92> 27— T sin ky z + Sk sin 2kyz . (6.4.5)

Position, velocity and acceleration components, as well as the trigonometric terms
appearing in Eq. (6.4.5) are plotted as a function of z in Fig. 6.4.1. Regions of the trajectory
that dominate E(t) (because B, and hence transverse acceleration a, is large) are indicated
in the top figure. These regions are centered alternately on the north and south magnet
poles.

Following Kim*( though not in detail) as well as (and more closely) Als-Nielsen and
McMorrow,!! to interpret Eq. (6.4.5) it is useful to re-arrange it so that the linear term is
the same as the arguments of the trigonometric factors. Toward that end, copying from
Egs. (6.2.33) and (6.2.26), we introduce

2’)/2
Tl K22+

wi (V) kw, ¢r=wi(9)t, and ¢, = kyz = kyct, . (6.4.6)

The newly introduced quantity ¢; is the observation time expressed as a phase angle, where

the phase is referred to the n = 1 undulator resonance frequency at the particular angle 9.
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T
)
- dominates E(t) -

T
X, a , BZ , sm(sz)

“dominates E(t)

-0.5

0.5 T T T T T T

5l I I I I I I I I I
-0.79 0 0.79 1.57 2.36 3.14 3.93 4.71 55 6.28

Figure 6.4.1: Graphs showing the correlations among various quantities
as a function of longitudinal position in the undulator. Vertical scales can
be reconstructed using formulas in the text.

Then we obtain'

270K

b =02 g + K2/2 + 4202
= ¢, +psing, + q sin2¢, .
An example of this dependence is plotted in Fig. 6.4.2.

K?/4
1+ K2/2+ %092

sin ¢, + sin 2¢,

(6.4.7)

The electron’s motion is a periodic function of ¢, with period 27w. As ¢, advances by

27, the first term on the right hand side of Eq. (6.4.7) advances by 27 while the other

t Apart from different symbols, my p and ¢ need to be multiplied by Fw/wi () respectively to be the
same as Kim’s p and ¢. It appears that Kim’s Eq.(4.23) has a typographical error—in his factor ¢/K — cos¢
the first term is of order 1/+ relative to the second, and hence would be neglible according to the usual
approximation. To be consistent with my formulas his K should be replaced by ©. Kim corrects this error
in the equation below his Eq.(4.51).
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Figure 6.4.2: Observation phase ¢; versus emission phase ¢,, as given by
Eq. (6.4.7), for K = 0,1,10; 9 = 0. Where the curves are almost horizontal,
a large range of ¢, corresponds to a small range of ¢;.

terms return to their original values. Therefore ¢; also advances by 2m. Since Ep(t), the
electric field at observation point P at time ¢ must be a periodic function (in the long
undulator limit), when Ep(t) is expressed in terms of ¢; it must be periodic with period
27. But Ep(t) is not, in general, a sinusoidal function. In fact, as K increases the electric
field becomes progressively more peaked and therefore has progressively higher frequency
components. Note also that, because w;()) depends on ¥, the harmonic frequencies are
multiples of a fundamental frequency that depends on 9.

The leading cancellation within a single undulator period as K increases toward 1
and beyond is illustrated in Fig. 6.4.3. At any point on the viewing screen! there are
contributions to the amplitude for every value of z but, especially as K increases, the
greatest contributions at any angle come from regions near the points of tangency with the

electron’s trajectory. One sees from the figure that there are two such points per undulator

T Recall that, in a Fraunhofer picture, parallel rays converge to a single point on the viewing screen.
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period. A procedure suggested by this feature is to calculate the amplitude from a full
period (instead of from a half-period as previously) by summing the integrands from paired
points before completing the integration. Then the complete undulator amplitude will be

obtained as the sum of N,, (instead of the previous 2V,,) phasors.

Another feature that can be inferred from Fig. 6.4.3 is that for § # 0 (as in the
figure) the spacing between the two sources deviates from A, /2. This defeats the usual
cancellation on even radiation harmonics, which leads to radiation peaks between the

dominant, odd harmonic peaks.

interfering "rays"

y %s‘n(sz) 7

% ‘ % Z
z
O electron orbit

distant
viewing
screen

Figure 6.4.3: The contributions to the radiated amplitude at any angle
are greatest in regions near the two points of tangency. Because of their
opposite curvatures these amplitudes interfere destructively at low frequen-
cies. The n = 1 resonance condition is satisfied when the electron delay
(relative to photon) first converts this to constuctive interference. As K
increases from zero, the two contributions become increasingly out of phase
due to the electron’s speed deficit and non-straight path.

Proceeding to the analytic calculation, the electric field is given by Eq. (2.1.5)

(6.4.8)

ret.
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and using Eq. (2.3.4), its transform is given by

L [Ee(F-2) <)
):ﬁ\/—%/_mém (1_72\;)3‘3 dt . (6.4.9)

E (w

ret.
Changing the integration variable from ¢ to ¢, and replacing the dt/dt, factor using
Eq. (6.2.19) yields

Bw=—1 1 /_oo eiwt(tr)ﬁ?((7€ ) : ‘) dt, . (6.4.10)

dmegcR /21

We will use the result

R x ((f—v/o) xx'r/c) d R x (72\>< v/c)

(l—ﬁ,v/c>2 = dt l—ﬁ-v/c (6.4.11)
Since this formula is critical, I exhibit the main step in its derivation:
(R (F) R (Frs) Fx(Fr)
dty 1-R v - 1-R v +<1_72\,V>2R'V
R x (R = — (6.4.12)
(R 4 (R) 5 (R o
= (1—72\-v>2 ;

where two terms have cancelled after expanding the triple cross product. Combined with
the relation R x (vxv)= (72\ V)V — (75 - v) v, this yields Eq. (6.4.11). Since R is
being held fixed in this calculation, we are neglecting the displacement of the electron off
the undulator axis in the determination of R . This assumes that K Ay << R, which will
always be valid in practice. Substituting into Eq. (6.4.10), and replacing the triple cross
product as in Eq. (2.1.6), we obtain

~ q 1 ot @ -v,/c
E = — e | ——— di, . 6.4.13
(w) dmegcR /27 /_oo ¢ dtr \1-R - V/C ' ( )

This formula can be further simplified by integrating by parts and again using Eq. (6.2.19);

= . Ny dw
E (wa 0, ’ll}) w > eiwt(tr) Vi dt

7 _—
4dmegcR \% 27 _%A_w c

c

. (6.4.14)



148 Undulator Radiation

In this step we have restricted the range of integration to the actual length of the undulator
which is N, A,. To make the transitions between inside and outside as graceful as possible

we require Ny, to be an odd integer. In component form, from Eq. (6.4.3), the transverse

vi (O coskyz—0
== ( iy ) . (6.4.15)

Substituting this into Eq. (6.4.14) and changing integration variable from ¢, to ¢, using
Eq. (6.4.7) yields

velocity is given byT

E(wb¢)  iw (M7 | |
N Vv z z 20,
- o3 I Uy (¢- + p sing, + ¢ sin2¢,)

O cos ¢, — 9) do,
— kwC
(6.4.16)

where N, has to be odd. We can now exploit the periodic nature of the exponent to

represent the integral as a sum;

E ; (Nw—1)/2
E(w797w) o 1 w Z o <ZL 27[-])
q =
4dmegcR \/ﬁ kwc 2 o1 (19) (6.4.17)
X /_7T exp <2ﬁ(m (¢z +psing, +q sin2¢z)> (@ cos_isbz — 9) i6.

This is the main result of the calculation. Since the integral is independent of NV,,, one has

obtained a useful factorization into a “phasor sum” part (which can be readily summed)

(ng)h W exp (—m' —wl“zﬁ) (Ny — 1)) — exp (m' w—f‘(’ﬁ) (Ny + 1))
exp 27rzw ) J] = —
j:—(Nw—l)/2 1 1— exp <27T7/ m)

sin (Nymw/wq (9))
sin (rw/wy (9))

(6.4.18)

and the “single period amplitude (which will, in general, have to be evaluated numerically)
7 w m W
el LW ) -
V27 kuc /_W exp <2w1 @) (¢, +psing, + ¢ sin ¢Z)> <

For frequencies close to resonance, using the definitions of Eq. (6.2.37),

© COS_ZS; - 9) dp, . (6.4.19)

1 w
V=—

n wy (9)

=1+ Av, (6.4.20)

 Because both components of v, are even functions of z their Fourier transforms are relatively real,
which means they are in phase in all directions, which causes the radiation to be linearly polarized. This
contrasts with the radiation from arc magnets, which is elliptically polarized.
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the phasor sum can be approximated, as in Eq. (6.2.40), though the details are quite
different because the integral now covers a full period of the undulator. One result of this
is that both numerator and denominator vanish at Av = 0 for values of n that are both

even and odd. Exactly on resonance the value of the sum is

Z B d/dAv sin (Ny7mn (1 + Av)) _N (_1)(Nw—1)n — N, - (6.4.21)

Av=0  d/dAv sin (mn (1+ Av)) lav=0
the last step follows because N,, has been required to be odd. Near all resonances we have

sin (Ny,mnAv .
> &N, ]\(fw;’nm ) _ Ny sinc (Ny,mnAv), n=0,1,2,3,... . (6.4.22)

(To recover the exact result from this approximation one need only replace the N, sinc
factor by expression (6.4.18).)

It is plausible to suppose, near any undulator resonance, that the dependence of
E(w,6,1) on w (which is to say the dependence on Av for Av << 1) is dominated by the
phasor factor (6.4.22). (Since the approximate vanishing of the field for even n harmonics
is built into the single period integral, for the dominant contribution we approximate only

the odd n harmonics in this way.) Then, in integral (6.4.19), we make the replacement

w = nwi(¥) and get

\/%%(cm /_7; exp (in (¢, + p sing, + ¢ sin2¢,)) (9 coii}z_9> 1o,

:Z@M /07T cos (n (¢, + psing, + ¢ sin2¢,)) <@cos_q$—9> do, .

kwc

For § = 0 the dominant (upper) integral can be evaluated analytically;

\/i2_7r nﬁu(cﬁ)@ /OW (cos ((n + 1) ¢ + ng sin2¢.) + cos ((n — 1) ¢ + ng sin 2¢.)) dg.

. 2w —
= \/;_W nu]:u(cﬁ)% /0 <cos (n; 1£+ ng sinf) + cos (nTli +ng Sinf)) dg

= z\/g nw (9) K (JnTH (—nq) + JnTA (—nq)) :

kwe vy

(6.4.24)

Recombining factors we obtain

Ea;,n (w,0,9) . [mnw (V) K )
— 7 ~i\3 T 7Nw sinc (NymnAv) (JnTH (—nq) + JnT—l (—nq)) )

4megcR

(6.4.25)
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which is valid only for odd n and for Av << 1. The lower component of Eq. (6.4.23) can

be evaluated for even n. It yields

M N \/—nwl( )( ¥) Ny sinc (NymnAv) Jo (—ng) . (6.4.26)

TrecR kwc
These formulas can serve to check the numerical evaluation of integral (6.4.23) in the § = 0
limit.
Recapitulating, the unapproximated, general K, undulator radiation formula derived
in this section is

E(w,e,w):i\ﬁ w sin (Nymw/wy (9))
m k

47re((1)c'R wC sin (71'(.41/(.4)1 (19))

T w 0K w . K w O cos¢p, — 0
X/o cos<w1w)¢ Nk sin ¢ +8fy2 e sin qS) ( o )qu
(6.4.27)

The factorization into phasor part and single period part is analogous to the similar fac-
torization in Eq. (6.2.42). In particular the single period integral in the lower line is
independent of N,,. The only dependence on N,, enters via the phasor factor which,
except for inessential odd/even complication, is the same as in the earlier derivation. Fur-
thermore, from the N, sinc(N,7mnAv) approximation to the phasor part, one sees that it
is independent, of angles once the frequency is expressed via the offset variable Av. For
practical wigglers, having say N,, > 10, this sinc approximation is valid in regions where
the radiation is significantly large. In these regions the replacement w/wi(9) — n in the
integrand (as in Eq. (6.4.23)) is also legitimate, yielding

E(w6,9)~ Y Eu(8,9) nN,sinc (NM (wl“zﬁ) —n>> : (6.4.28)

n=1,3,5,...

where

0
B, (0,9) = 47T6()CR 1+K2/2+72192

270K sin ¢, (K2/4) sin 2¢, O cos g, — 0
/0 cos( (¢Z_1+K2/2+72192+1+K2/2+y2192>> ( 4 >dq§z.

(6.4.29)

These features insure that the discussion in section 6.3 of energy interval definition and

angular width of the radiation carries over unchanged to the exact, general K, radiation
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pattern derived in this section. Until one approaches intensities at which free electron
laser action (i.e. stimulated emission) becomes important, the only enhancement to the
forward amplitude is the N,, factor coming from the phasor factor. After squaring this
leads to a N2 dependence for the on-resonance Poynting vector in any given direction. For
a detector having fractional energy acceptance small compared to 1/N,, and tuned exactly
on resonance, this leads to an N2 rate dependence. For a detector having broad energy
acceptance and therefore integrating over a range broad compared to the resonance line
width, the rate is proportional to N,,. This behavior is consistent with the proposition
that the total energy radiated from the undulator is given by the standard Schott formula
(Eq. (6.2.14)), unenhanced by any interference effect.
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6.5. Numerical/Graphical Representation of Undulator Radia-
tion

The angular intensity pattern is proportional to |EWJ 2(6,), which is given by Eq. (6.4.29).
It is exhibited for K = 1.5, n = 3,5, in Fig. 6.5.1 and Fig. 6.5.2.

Figure 6.5.1:  Histogram representation of undulator radiation: the

height of each bin gives the value of | E3 ;|%-_; (6, ), as given by Eq. (6.4.29)
(with factor q/(4mepcR). suppressed) at the appropriate value of (v6,vv).

Since the photon frequency w is known as a function of the same independent-
variable pair (0,%) (Eq. (6.4.6)), it can be exhibited as a ratio w/ws(0)

which is coded by the grayscale shading. The forward direction is marked

by the highest tower which has w/w3(0) = 1 and is therefore pure white.

‘gamtheta’ and ‘gampsi’ stand for v0 and 1. The bin widths are Af =

At = 0.15/v. This data is independent of N,,.

Each histogram tower represents both |E37$|%{:1.5(9,1/)) and the ratio w(#,)/ws(0).
The intensity is represented by the height of the tower and the photon energy by its
grayscale value. The bin widths are YA = yAy = 0.15. A detector having these accep-
tances and centered, say, at the origin, would count only photons of frequency w = w3(0)
(which makes the tower pure white.) Assuming the detector accepts all photons close to

this energy (so the sinc-factor of Eq. (6.4.29) can be treated as a d-function) the rate can
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be read off from the vertical axis, but still needs multiplication by the factor nN,, from
Eq. (6.4.29) and by the factor Af A¢y. (The vertical scale is not shown, but it extends
uniformly from 0 to 2.5 x 108.) If the detector’s fractional frequency acceptance is small

compared to 1/N,, it is necessary to include the sinc-factor dependency of Eq. (6.4.29).

1.6e+08 7
1.4e+08
1.2e+08 4
1e+08
[E["2
8e+07

6e+07

4e+07

2e+07 A

04

10
gamma*psi

2
40 30 gamma*tﬂeta

Figure 6.5.2: Same as previous figure except now n = 5 and bin spacings
are 2A0 = Ay = 0.15/vy. The f-angular separation of fringe maxima is
approximately 5 x 0.075/y = 0.375/~. The factor sin k,z advances from
0 to 1 between north and south magnet poles, so the second term on the
rhs of Eq. (6.4.5) gives a phase advance (at this angular separation, n = 5,
K =0y =1.5) equal to 5 x 29 x 1.5 x 0.375/y =~ 2. This is why angular
fringes are visible even with N,, = 1. For N, > 1 it is only the central
maximum that necessarily coincides with a multiple-pole maximum. A
diffraction grating constructed from repeated double slits having a quarter
wave plate in front of one of the slits could give a similar pattern.

There is an inevitable trade-off in which the undulator beam frequency wy(0) and
intensity |E|? are made as high as possible consistent with the machine energy v and und
undulator wave number k,, being as low as possible. For “cleaner” operation one prefers
both the undulator parameter K and the harmonic number n to be as low as possible.

(Until accelerator physics issues intrude, the bigger the better for N,,.) The first formula
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governing this trade-offs is Eq. (6.4.6);

wy (0) n
cky2y? 14+ K2/2°

(6.5.1)

by which the resonant frequency can be increased by increasing n but is unavoidably
decreased by increasing K. The second key result, from Eqgs. (6.4.24) and (6.4.7), (still
suppressing the sinc factor and the factor ¢/(4mwepcR)) is

These formulas are evaluated for ranges of n and K, and the results exhibited numer-
ically in the following table and graphically in Fig. 6.5.3. In each case in the table the
upper number is given by Eq. (6.5.2) and the lower is given by Eq. (6.5.1).

n\K 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.4 2.6 2.8 3.0
1 0. .25 .78 1.5 2.1 2.2 2.3 2.3 2.2 2.0 1.8 1.6 1.4 1.3 1.2
1. 1.0 .91 .83 17 .67 .69 .50 .43 .38 .33 .29 .26 .23 .20
3 0. .49e-3 .022 .14 .61 1.1 1.7 2.2 2.4 6 7 2.4 2.4 2.2 2.1
3. 3.0 2.7 2.5 2.3 2.0 1.8 1.6 1.3 1.2 1.0 .88 .79 .68 .60
5 0. .60e-6 .30e-3 .012 .11 .31 .60 1.3 1.9 .6 .6 2.8 2.7 2.7 2.6
5. 5.0 4.5 4.2 3.8 3.3 2.9 2.6 2.2 1.9 1.7 1.5 1.3 1.1 1.0
7 0. .60e-9 .39e-5 .60e-3 .015 .11 .25 .86 1.4 1.8 1.9 2.7 3.1 2.8 2.6
7. 7.0 6.4 5.8 5.4 4.7 4.1 3.5 3.0 2.7 2.3 2.1 1.8 1.6 1.4

9 0. .58e-12 .46e-7 .33e-4 .0019 .023 .11 .34 .72 1.4 1.7 2.0 1.9 2.5 2.2

9. 9.0 8.2 7.5 6.9 6.0 5.3 4.5 3.9 3.6 3.0 2.6 2.4 2.0 1.8
11 0. .54e-15 .61e-9 .15e-5 .39e-3 .0044 .029 .22 .60 .56 1.8 1.9 1.9 2.6 2.9
11. 11. 10. 9.2 8.5 7.3 6.5 55 4.8 4.2 3.7 3.2 2.9 2.5 2.2
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Figure 6.5.3: Histograms illustrating the dependence of undulator fre-
quency (indicated by tower height) and intensity on resonance (indicated
by tower grayscale) on undulator parameter 0 < K < 3.0 and resonance
order n = 1,3,5,7,9,11. The grayscale is the same as in Fig. 6.5.1 and is
normalized to 1 (white) in the lower left hand corner. Black regions have
negligible flux.

An example may help to clarify this data. Consider the points (n, K,int., freq.) =
(1,0.2,0.25,1.0), (3,0.6,0.14,2.5), (5,0.8,0.11, 3.8),(7,1.0,0.11,4.7), (9,1.2,0.11,5.3). These
points have comparable intensities but, by increasing n and K together, it is possible to
increase the beam frequency from 1.0 to 5.3 (in units of ck,2v2.) Being proportional to
K2, the total radiated beam power increases by a factor of 36 over this range. The beam
is therefore much “cleaner” for low n values than for high. Calculations like this are useful
in fixing the major storage ring and undulator parameters to achieve high brilliance. See

chapter 9.
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6.6. Approximation of the Integrals By Special Functions

The integrand in Eq. (6.4.27) can be Taylor expanded in terms of the (small) variable
2

n2p?  nlp?
cos (n¢ + np sin ¢ + nq sin 2¢) = cos (ng + ng sin 2¢) <1 — + 1 cos2¢ + .. )
— sin (ng + ng sin2¢) (np sing +...),
(6.6.1)

and further terms can be derived easily. Here, motivated by Eq. (6.4.29), we have gener-

alized the meaning of variable n by making the substitution

w

wi (1)

=n, (6.6.2)

which means that n is now allowed to lie anywhere in the range 0 < n < oo and, in
particular, to not necessarily be an integer. Nevertheless, especially for large N,,, the sinc
factor suppresses the complete expression when n is not close to an integer, so n can be
thought of as being close to an integer.

Using abbreviation C = cos(n¢ + ng sin 2¢) we define standard integrals

I(;O:/ C do, 101:/ C cos ¢ do, 102:/ C cos2pde , (6.6.3)
0 0 0

integrals Iy, Igo, .. ., are defined similarly, but with C replaced by S = sin(n¢+ ng sin 2¢).

The required integral is

/W d¢ cos (ng + np sin ¢ + ng sin 2¢) [(%) cos ¢ + (:Z)]
0

_ (9(1_32;)2/8)) ot + <@n20p2/8> loat <—n%@/2> I, (664

—6 (1 —n?p?/4) —0n?p? /4 npb
+ <—1/) (1 — n?p?/4) Ico + —mip?/4 Ica + nptp Is1+....
I was evaluated for odd n in Eq. (6.4.24), but it, and the other integrals, can now be

expressed for arbitrary n and for positive integers j as

1 27 . 1 21 N
ICj:Z/ cos(n2j§+nqSin§> d§+1/ cos(”—2|—,7§+nqsin§> d¢
0 0

Is; = /OW sin (n¢ + ng sin 2¢) sin j¢ d¢ (6.6.5)

1 2 o 1 21 N
= Z/0 coS (n2 j§+nq sin§> d§—1/0 cos <nT+J§+nq sinf) d¢
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All these integrals can be expressed in terms of the functions
nd, = / cos (v — z sinf) do
0

B, = / sin (v 6 — z sin @) df
0

157

(6.6.6)

where J; is known as an “Anger” function and E; as a “Weber” function. (G. N. Watson,

Bessel Functions, p.308.) These definitions are valid for general values of v, but we will

mainly use only integers or half-integer indices. Both functions are known to MAPLE and

are presumably rapidly calculable. Bisecting the range, and replacing 6 by 27 — 6 in the

second integral, Watson gives the formula

2w L
/ cos (v — z sinf) df = / (cos (v — z sinf) + cos (2vm — vl + zsin6)) db
0 0

= 27 cos® v J, (2) + m sin2vm E,, (2) .

In terms of these functions the required integrals are

s n—j T . .
Igj = = cos® ( j7r> Jn%j (—ngq) + 1 sin((n —j)7) Enj (—nq) ,

2 2 2
+g cos? <n_2+_j7r> J%j (—nq) +% sin ((n + j) m) EnTﬂ (—nq) ,
Iy = 5 cot (") i (n) + T sin (0 = ) 7) B ()
— g cos> <n;j7r> J% (—nq) — = sin((n + j) 7) Enyj (—nq)

(6.6.7)

(6.6.8)
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6.7. Practical Evaluation of the Series

The Taylor expansion of Eq. (6.6.4) can be spelled out in general as follows:
binomial (m, (m — j) /2)

f (m,j) = m! 2(m—1)
a(n,g)= (=1 3" (=1 () f(2i.5), =0,2,4,...
0

ap (n) = a(n,0)/2, |

b(n,j)= ()Y V2N (1) (gp)Y F (204 1,5), j=1,35,...

1B, () = 5 (200 () + 0 (0.2)) Ty

K tmax—1 ' ' K '
T /221 (a(n,2i') +a(n,2i' +2)) Lo + 5 @ (1, 2imax) 10 2imax+1
1=
K tmax—1 K
-5 > (b2 +1) +b (.2 +3)) Isaigs— 5 0 (1 2imax + 1) T8 2imas+2
i'=0
tmax tmax
—0 ( ) Ico+ Y a(n.2i) Iy — > b(n,2i' +1) Isml)
i'=1 i'=0

tmax tmax
YEy (1) = =y ( ) Ico+ Y a(n,20) Iogs — Y b(n, 28" +1) Ismﬂ)
i'=1 i'=0
(6.7.1)

these expressions still need to be multiplied by the factor

z\/g _w_ sin Ny (6.7.2)
T kyc sinmn

this factor (except for the 7) is included for the following graphs. The maximum power of
p retained in the expansion is 2i,,x + 1. For constant accuracy tmax has to increase with
increasing y¢. At fixed K the ring structure depends only on #. Because an oscillatory
function is being fit by a power series, the number of cycles fit is probably proportional to
the highest power retained. From the example we have studied most carefully (K = 1.35)
a suggested rule of thumb is to choose ipax to be about four (or more) times the number of
rings to be faithfully calculated, but this should be investigated in each case. The following

three pairs of graphs illustrate these comments.
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Figure 6.7.1: The left graph shows (superimposed) the values of |E(79, v =
0.3,n = 3)|? as given by integral (6.4.19) evaluated numerically and by us-
ing the method of section 6.7; tymax = 14
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Figure 6.7.2: The left graph shows (superimposed) the values of |E(79, v =
—0.2,n = 7)|? as given by integral (6.4.19) evaluated numerically and by
using the method of section 6.7; iy = 14
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Figure 6.7.3: The left graph shows (superimposed) the values of |I§(’y€, v =
0.2,n = 10)|? as given by integral (6.4.19) evaluated numerically and by
using the method of section 6.7; iyax = 14.

The fractional accuracy is excellent over the full range —1/v < 6 < 1/7 which includes
essentially all the radiation. To obtain excellent accuracy in the experimentally relevant
region of the central peak it is sufficient to use only the terms exhibited explicitly in
Eq. (6.6.4).

Since 6, but not v, has been assumed small in deriving Eq. (6.6.4), its region of validity
should be a narrow band centered on the 1-axis. From Fig. 6.5.1 and Fig. 6.5.2 one knows
that the radiation pattern is made up of parallel valleys separated by long mountains that
are aligned with the t-axis. Since the variation with 6 (at fixed ) is roughly sinusoidal
(squared) one cannot expect a power series truncated to the terms shown explicitly in
Eq. (6.6.4) to remain accurate outside the central three mountains. Nevertheless this
truncated (and hence quite simple) form should be useful in practice because it it is the

central mountain that is mainly used in most applications of undulator radiation.
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6.8. Post-Monochrometer Profile

The beam from the undulator is typically passed through a monochrometer which passes

only frequencies in a narrow band centered at, say,

Wmono. = Mmono. W1 (0) ; (681)
where nmono. 18 set to an integer or, typically, slightly below an integer. (For the example
to be worked out shortly nmeno. = 7.0.) Substituting this into Eq. (6.6.2) yields

1+ K?/2 + 292
1+ K2/2

n (19) = T'mono. (682)

as the appropriate parameter at which integral (6.6.4) is to be evaluated.T For large N,
we know that the phasor factor will suppress the field unless 7 is close to an integer; call
it nparm Where

Nmono. < Mharm. < Mmax. (683)

where npax. is the highest undulator harmonic that is kinematically possible or some
arbitrarily chosen maximum value of interest. The analysis would be simplest for nyono. =
Nmax. but, in practice, it may be desirable to center the monochrometer on an undulator
resonance lower than the maximum possible. (For the example to be worked out shortly
Nmax. = 10.) When this is done the harmonics for which npam,. > Nmoeno. yield circular

ring profiles centered on the undulator axis, at angle Jpar. given by solving Eq. (6.8.2) to

K2 rm. ~ ' mon
YPharm. = \/(1 + 7) ['harm. — Ttmono. . (6.8.4)

M'mono.

obtain

The convergence of series (6.6.4) is worst for nyarm. = Pmax.- 10 save computer time it is
sensible to calculate only at points for which the phasor factor is not negligibly small. The
larger N,, is, the slimmer are the rings in which there is any appreciable response. For
example in generating Fig. 6.8.1 we have taken Anyay, = +1/N,, as the range over which
the phasor factor is not negligible. This suppresses secondary diffraction rings having

intensities in the several percent range.

 Note the surprising result that the argument of the Bessel-like functions entering the post-monochrometer
g g g
profile, namely 1(1) ¢ = nmono. (K2/4)/(1+ K?/2), is independent of 1 and hence of emission direction. This
gives no important simplification because the indices depend on direction.
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Figure 6.8.1: Spectrum for published ESRF configuration as recalculated
using Eq. (6.6.4). Physical parameters were E = 6 GeV, N, = 20, A\, =
46 mm, E, = 27keV. Calculational parameters are N,, = 19, imax = 14,
Nmono. = 7. This result can be directly compared with another calculation:
www.esrf.fr/machine/support/ids/Public/CentralCone/CentralCone.html
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6.9. Accelerator Physics Considerations

To complete the determination of intensity, brilliance, distribution functions and other pa-
rameters of the produced beam, it is necessary to address accelerator physics practicalities.
For a start we assume the radiated power is small enough to make it legitimate to neglect

degradation of the electron beam caused by the undulator deflections.

It is implicitly assumed in most discussions of synchrotron radiation (including this
one) that the bend plane is horizontal and is designated as the x plane; the dominant field
component is then E,. (For the same reason) practical electron beams are usually ribbon-
shaped, with transverse sigmas related by o, << o0,. Because of this, it could turn out
that vertical deflections would give superior performance for some purposes. I leave this

as an open question, but continue to assume implicitly that the bend plane is horizontal.

6.9.1. Dependence of brilliance on electron beam emittance

For any one electron, it has been argued that the spectrum is rather insensitive to the
particle’s slope. In this sense the accelerator optics at the undulator is unimportant. It is
true however, that the spike visible in Fig. 6.2.8 is as sharp as it is because a restricted range
of angle ¥ has been assumed. Commonly, as mentioned earlier, one will wish to limit energy
spread by exploiting the correlation between production angle and wavelength by limiting
9. For this to be effective the collimation has to take place at a distant location, where the
transverse position is dominated by production angle rather than production position. A
collimator at such a distant location will limit the ¥ range. Such an aperture will only be
efficient if the spread of electron angles is not greater than the angular acceptance, which
is about \/m /7. It may therefore be advantageous to reduce the electron cone angle
Oy = \/m , though doing this by increasing 3, will not increase the brilliance, because
the spot size will be correspondingly increased.T If the reduced angular spread is obtained
by reducing €, most of the improvement in angular acceptance will have been achieved

when o,y = \/Avyn,/v = 1/(V/Nw7). Accepting this as an equality, we obtain a “break

point” below which the brilliance increases with decreasing emittance only because the

t Technically, for the r.m.s. angular spread of the electron beam, one should use o, = /€7, where
vz = (1 +a2)/B:, but I will assume the undulator is at a “waist” where a, = 0.
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spot size decreases;

ﬁl’ /81‘ e.g. —10
= = =10 -rad. 6.9.1
€x,break Nw’Y2 (Lw/)\w) 72 ( m-ra ) ( )

for N, = 1000, v = 10%, 8, = 10 m.
In the K << 1 limit that has been discussed so far there is no essential distinction
between horizontal and vertical displacements and angles, so the same estimates apply

to o, and €, preak- Hence, for round beams, the brilliance varies inversely with electron

y
emittance below the break point and inversely with the square of emittance above it.
For € < €preax the brilliance is given by formula (6.3.11), so a semi-empirical formula

giving the brilliance through the full range of possible emittances is

3N, Py 1 1 \/ 1

By = — . 6.9.2
? E’Y V Br€x \ Byﬁy I+ ‘fx/‘fx,break I+ 6g,l/fy,break ( )

As with all formulas so far, it is assumed that K << 1. It is always advantageous to
reduce either or both of €, and ¢, but below the break points the brilliance increases more
slowly, proportional to 1/(y/ex,/€,;). This dependence is fairly weak, but it still justifies
efforts to reduce €, unless this can only be accomplished by reducing the current in the
electron beam. Reasons why such reduction is likely include the Touschek effect in circular
machines or gun limitations in linear machines.

One “sanity check” that can be applied to the numerical value of €; preax given in
Eq. (6.9.1) is to test whether the value 8, = 10m is appropriate. Unless one goes to
special lengths such as breaking the undulator into sections to make room for focusing

elements, storage ring stability will lead to a relation 3, ~ L,, and, very roughly,

€x,break ~ :/—g) (eé 2% 10710 m—rad,) (6.9.3)
which is consistent with Eq. (6.9.1) to the accuracy of the arguments. Note, however,
that Eq. (6.9.3), unlike (6.9.1) is independent of 3,. This is relevant because, if it should
prove possible to reduce €, arbitrarily, then Eq. (6.9.1) can be satisfied by reducing £,
proportionally. This would reduce the spot size, and hence increase the brilliance. But
Eq. (6.9.3) shows that the practicalities of lattice design make this route less promising

than might initially have been anticipated.
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For the so-called “third generation light sources” such as ESRF and APS, vertical
emittances as small as the emittance just calculated (e, ~ 1079 m-rad at v = 10%) are
actually achievable, but the minimum horizontal emittance is perhaps ten times greater.
On the other hand, since typical wiggler lengths are not much greater than two meters
and typical A\,’s greater than 2cm, N, = 100 is typical, in which case, according to
Eq. (6.9.1), there is reduced benefit in reducing emittances below €, ~ 107 m-rad. One
way of advancing “beyond third generation” is therefore to design electron accelerators
that allow the insertion of undulators that are tens of meters in length.

Once a storage ring has been built one has little control over the emittances and one

looks differently at Eq. (6.9.1), perhaps rearranging it into the form
ﬁx;Nw’Y26m . (6.9.4)

When the radiation from the arcs of an accelerator that was designed for colliding beam
physics is used parasitically, the ring is sometimes said to be a “first generation light
source”. After the installation of dedicated wigglers or undulators such a machine is
promoted to the status of “second generation”. As an example, consider CESR, for which
v = 10% €, = 2 x 107" m-rad). Comparing Eq. (6.9.3), the emittance is above the break
point by three orders of magnitude, which converts to a brilliance defect of six orders of
magnitude. Viewed alternatively, with N,, equal to, say, 100, substitution into Eq. (6.9.4)
yields B, ~ 2000 m which, being some 200 times greater than typical values of 8, in the

ring, is impractically large.
6.9.2. Dependence of Beam Brilliance on K

The flux of electrons in a beam with current I is I'/e. Using Eq. (6.2.17), which gives the
total energy emitted by a single electron from the 2/N,, undulator poles, the total power

radiated into the n-th harmonic is

Pn:fn(K)

I 2 C,E* (K\?
- — — ] 2N, 6.9.5
e ml/2 Ay v v ( )
where f,(K) is the fraction of the power radiated into the n-th harmonic. (fi(0) = 1.)
f1(K), crudely extracted from data in the Wiedemann paper mentioned above, is plotted

in Fig. 6.9.1.
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Fraction of Beam Power in First Two Undulator Lines
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Figure 6.9.1: Plot of fi(K) and F3(K), the fraction of power radiated
into the first two undulator lines, as a function of undulator parameter.
Crudely extracted from figure 3 of the Wiedemann artucle in the Chao-
Tigner handbook. (f1(K) has a different meaning in that article, and it is
possible I am misinterpreting the data.)

Combining Eq. (6.9.5) with Eq. (6.9.2), the X-ray beam brilliance (in the K << 1
limit) is given by
e /2 Aw b E’Y \/1 + 6aL‘/faL‘,break \/1 + ‘Ey/fy,break

By increasing the K value from, say, K = 0.1 to, say, K = 1 this formula indicates

that the brilliance will increase by two orders of magnitude. But there are at least four

factors that make the brilliance depend on K less rapidly than this.

e From Fig. 6.9.1, one sees that the fraction of power in the fundamental line
falls by a factor of 3 as K increases from 0.1 to 1.0.

e Because of the finite bend angle in the undulator, the “searchlight” beam from
the electron is not always directed at the center of the X-ray collimator. Again
one can define a “break point” Kjeax Which separates the low K region in
which the electron direction is within the collimator angle (so the flux and
brilliance acquire the K?2 factor), from a high K region where only a fraction

of the radiation swath passes through the collimator (so the flux and brilliance
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acquire only a factor K). When the electron angle is maximum, its radiation
is negligible, because it is at the position where the undulator field vanishes.
In fact the radiation is dominated by an arc in which the intensity is more or
less uniform but the angle varies from about —©/3 to ©/3. The break point is
therefore given roughly by

K /0.001
break — 39nom. = 3 , (6.9.7)

Y Y

which is to say Kpreak =~ 0.1. According to this, the brilliance acquires a

factor of about 10 (from this source) as K increases from 0.1 to 1.0. Because
the electron excursion is horizontal, it makes sense for the collimator to be
elliptical, say broader than than it is high by a factor of 10. In this case the
flux could acquire the full K2f;(K) enhancement as K increases from 0.1 to
1.0 but, because the solid angle factor has been increased, the brilliance would
be unchanged.

e In the increase from K = 0.1 to K = 1, according to Eq. (6.2.33), the factor
1+ K?/2 increases by 45%, and the peak X-ray energy shifts therefore from
12.4keV to 8.7keV. If we assume that E, cannot be increased (because the
storage ring is a its maximum energy) and \,, cannot be changed (because the
undulator has been built) it is difficult to assign a numerical penalty factor, or
cost, to this energy reduction. Perhaps one would work on the n = 3 resonance
line, and revise all the parameters accordingly. This may not be such a bad
deal, because of the threefold relative energy narrowing of the line, even if the
fraction of the beam power going into the n = 3 is low (about 1/4 according
to Fig. 6.9.1) but I will not estimate the effect on the brilliance of the other
factors.

e As explained previously, the angular beam width is proportional to \/m,
so the collimation solid angle may have to be increased by 45% as K is increased

from 0.1 to 1.0, with a corresponding loss of brilliance.

Ones assessment of the importance of these factors is subjective, and dependent on the
details of actual detection apparatus. If increasing the aperture width by a factor of 10 is

acceptable for the detection apparatus, increasing K from 0.1 to 1.0 yields a factor of at
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least 10 in flux at constant brilliance, which seems attractive. But if the X-ray aperture
has to be held fixed, both flux and brilliance (from the n = 1 line) increase only moderately
as K is increased beyond about 0.1. Working on the n = 3 line with, say, K = 1 may be
a favorable configuration, though. If it is important to keep the total X-ray beam power

low, running on the lowest possible harmonic is favored.

Ignoring all but the first two of the factors listed above, and substituting from Eq. (6.9.1),

the brilliance in the fundamental line is given by

; (K)£ 12 CLE3  K? N2 Ee 1/v/Beex 1//Byey (6.9.8)
! e /2 Ny, 1+ K/0.1 wE’7 \/1+Nw’}’2€m/5m \/1+Nw’}’2€y/5y :

(All quantities except those within the dimensionless ratio C’,YES’ /Aw are in MKS units.)
In practice €, is likely to be below the break, and €, above the break. Should this be true,
we get

1 12 CYE? K*f1(K) 32 E. 1 1

Bi(K) =~ w . 6.9.9
1 (K) end/?2 Ay 1+ K/0.1 Ey yer \/Byey ( )

In the regime where this formula holds, there is strong incentive for reducing €, and

(weaker) incentive for reducing €, and/or 3.

The formula for flux is more complicated, especially because it depends strongly on
the shape of the collimator, which will optimally be wider than it is high. But since
the brilliance is reasonably insensitive to aperture shape, Eq. (6.9.8) may continue to be

approximately valid for asymmetric apertures.

Even though some of the assumptions that have gone into Eq. (6.9.9) are probably
already irresponsible, in the interest of further simplification, let us assume (as we did
for 8, in deriving Eq. (6.9.3)) that 8, = L, = NyAy. Also, let us express emittances
relative to the value 2 x 1071 m-rad which is, on the one hand, probably achievable and,

on the other hand, close to the break point that has been used in approximating the
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emittance-dependent factors:

By (K) ~ I 12 CyE3 K*fi(K) . E. 1 (2x10710\ 1 2 x 10~10 10%
P e N, 1+K/01 Y E, Ve ey 232

~ 0.62 x 101 x 0.686 x 0.587 x 0.411 x 105 x 10™* x 7.07 x 0.353 x 10'°

K?f (K) 2 x 10719\ /2 x 10-10
— "2 N,
1+ K/0.1

€x

€ €y

~ 2.56 x 10231 mm ™~ 2mr~2/0.1%BW;

K?f (K) N (2% 10710 /2 x 10-10
1+K/0.1° "

€x €y

(6.9.10)
a factor 10712 entered in the last step to convert the brilliance into the conventional
mm~?mr~2 unit. (This expression is not fully consistent with the assumptions made
previously concerning the emittances, but it is approximately consistent when the €, factor
is less than 1, and the ¢, factor is greater than 1.)

Curiously enough, after having included assumptions that supposedly follow from unas-
sailable accelerator requirements, the brilliance depends only linearly on N,,. (This is prob-
ably because long undulators cause large beta functions which lead to large spot sizes.)
This appears to weaken the case for going to Herculean lengths to increase N,,—for exam-
ple, to obtain N,, = 1000 at A, = 2 cm requires L,, = 20 m, and yields brilliance only five
times greater than a 4 m undulator.

Specializing further, when parameters that have been suggested for the Cornell Energy

Recovery Linac (I=0.1A, K=1, E,=12.4keV) are substituted, the anticipated brilliance

18

mm~2mr~—2/0.1%BW . (6.9.11)

By ~ 0.67 x 102" N, (2X10_10> 2x107D
~Y . w

€x €y
This brilliance is somewhat higher than values obtained by Bilderback and Finkelstein
using available computer programs, but too-optimistic assumptions have perhaps been

made, not to mention likely blunders, since the results have not been checked.
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6.9.3. Is the Forward Peak Subject to Line Narrowing?

The 2N,, undulator pulses resemble the emission from a linear, phased array, transmitting
antenna. Even though the individual elements in such an array radiate more or less
isotropically, when they are phased correctly, a narrow beam parallel to the array can be
produced. To produce such a beam with free-space wavelength A, because the wavefronts
propagate at the speed of light, successive radiators should be phase shifted by (an odd
multiple of) A, /A to give constructive interference in the direction parallel to the array.
(We continue to use alternating sign radiators spaced at A, /2.) The angular width of the
radiation pattern can be defined to be the angle of the first interference minimum. For
emission at (small) angle ) there is a phase shift Ny, \,0%7/\ between radiation from first
and last radiators. The condition for the vanishing of the amplitude from all 2N,, radiators

is that this phase shift be 27. That is

Ommin \/7 ™ fy\/_ (6.9.12)

where, in the last step, the relation A = A, /(27?) has been used. This is indeed a small
angle; for large Ny, it is much smaller than the cone angle 1/ characterizing radiation
from a single radiator.

The argument in the previous paragraph is fallacious however, since it assumed the
radiation to be monochromatic, with wavelength independent of angle. In fact there is a
large spread of wavelengths. At any angle the interference of all contributions at angle ¢ has
already been accounted for in Egs. (6.2.32) and Eq. (6.2.41). With Jackson, I therefore
expect no fringes. This is certainly not intended to belittle the value of undulators in
general. The narrowing proportional to 1/N,, of the frequency spectrum at fixed angle,
say in the forward direction, is both uncontroversial and invaluable. Under ideal conditions
it results in brilliance increasing as N?2.

Before leaving the question of whether fringes exist one can contemplate how such
fringes might emerge from Jackson’s, work-it-out-in-the-electron’s-rest-system approach.
For a start, one can question an assumption that is built into the Jackson picture, in spite
of its being manifestly incorrect. I refer to the assumption that the electrons execute pure
simple harmonic motion in their own rest frame when, in fact, they exhibit this motion

only during the “time window” during which the wiggler is flying by. The width in time
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of this window is AT, = NyLy/(vc). The dipole radiation due to this oscillation will
therefore be gated on for a time interval of length AT,. At any angle the fields will be
the product of a pure sinusoid and a square pulse. The frequency domain spectrum will
therefore be the convolution of a single line (from the sinuisoid) and a (sinw)/w spectrum
(from the square pulse). Qualitatively, the rest system frequency will be spread over a
range Awl, ~ l/AT{U.Jr

In the absence of the spread just described, the rest system dipole radiation is monochro-
matic; it is only after transformation back into the laboratory system that energy variation
results and, even then, there is a one-to-one relation between frequency and angle. (This is
because the laboratory system angle increases monotonically with increasing rest system
angle.) At fixed laboratory angle the radiation is therefore not only monochromatic, but
has unique phase. The presence of frequency spread in the electron’s rest system changes
this. Because of the spread of frequencies in the rest system there is the possibility of more
than one contribution to the radiation at fixed laboratory angle. For example, one visual-
izes two rest system photons having different rest system frequencies and angles, but the
same lab system frequencies and angles, and which could therefore interfere constructively
of destructively. Unfortunately this is impossible, since the angle transformation from
rest system to laboratory is independent of frequency. Therefore the laboratory frequency
spectrum is the same as the rest system frequency spectrum (except for the scale of the
frequency axis.) Nothing in this picture seems to predict the existence of angular fringes
in the forward radiation.

Yet one more point can be made. All analyses of undulator radiation seem to employ
the Fraunhofer picture, in which the detector is “at infinity”. This assumption can be
validated either by the image distance being large relative to all relevant source dimensions
or by the presence of a parallel-to-point focusing lens. For undulator sources neither of
these possibilities is fully available. X-ray lenses don’t exist and focusing mirrors are
problematical. And, especially with long undulators, the ratio of detector distance to
undulator length may not be very large. It seems fair to say, therefore, that X-ray detectors
are “out of focus” for observing interference fringes. This is just one more way in which

any supposed fringes would be washed out.

t By this point it should be clear this description is equivalent to that given previously in section 6.2.3.
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6.10. Treatment of Magnetic Wiggler Radiation as Thomson
Scattering

There is a well-known treatment of undulator radiation as Compton back-scattering of the
“photons” that are “produced” in a wiggler magnet. Since the frequency of these photons
is zero, yet their wavelength is A, they do not satisfy the relation between energy and
momentum of real photons, and they are said to be wvirtual.

For a horizontal-bending undulator aligned with the z-axis, the only non-vanishing
electric or magnetic field component is B, = By cos(k,z). With electrons propagating at
velocity —v along the positive z-axis, it is useful to transform the wiggler field into the

rest frame of the electron. The result is

E'= —yv B, cos (kv (¢ +0t') %, and B =3 x B . (6.10.1)

This is very nearly the relation between E’ and B’ belonging to a plane-polarized plane
wave, propagating in free space. In fact, in the limit v — ¢ the correspondance becomes
exact. Making the replacement v = ¢ yields what is known as the Weizsacker-Williams
approximation.

The wave just derived is said to be made up of “virtual” photons, and these photons
can Compton scatter off the electrons. The (magnitude of) the rest energy of one of
these virtual photons (calculated most easily in the laboratory frame, since the frequency

vanishes there) is given by

jm 2| = ‘\/(hw)Q — (hkw)? 2] = Bkye . (6.10.2)

Next consider the situation in the rest frame of the electrons. In this frame the photon
energy is B = hkyyv, since kyyv is the (frequency) factor multiplying ¢’ in the argument
of the cosine factor in Eq. (6.10.1). If this energy is small compared to the electron rest

energy,

E. = hkwyv << mc? (6.10.3)

(as will always be true for cases of interest to us) the incident and scattered photon energies
are the same. It will be valid to neglect the virtual photon mass (calculated in Eq. (6.10.2))

if it is small compared to this energy;

?
hkye << hkyyv, (6.10.4)
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which reduces to v >> 1, and will be abundantly true in practice.
Condition (6.10.3) is also the condition for the validity of treating Compton scattering

as Thomson scattering, for which the total cross section is

8
o= ?ﬂ r2 = 0.665 x 10728 m? . (6.10.5)

where 7, = 2.81784 x 107> m. (See Eq. (2.21).) Though this cross section was calculated
in the electron rest frame, the lab frame value is the same.

To calculate the radiation pattern in the laboratory it is necessary to write the angular
distribution in the rest system of the electron, and then to transform it into the laboratory
system. Though the scattered photons are mono-energetic in the electron rest system,
this will no longer be true in the laboratory system. We can write down the maximum lab
energy, since it corresponds to pure back-scattering. The result of Lorentz transforming the

photon four-vector, (hykyvce, 0,0, hyk,v/c), back to the lab frame, is a photon of energy
E, o= <1 + 2) 72 Tk & 272 hkye . (6.10.6)
c

Since v & ¢, the back-scattered wave length is less than the wiggler period A, by the factor
2+v2. This agrees with the undulator peak calculated using classical electrodynamics.

The energy and momentum components of the radiated photon in the electron rest
system (primed coordinates) and laboratory system (unprimed coordinates) are related by

the Lorentz transformation equations:
E; siny’ = E, sind

v
Eiy cos ) = (cosz? - E) vE, (6.10.7)
;o v
E = (1 — cosz?) vE,
Since Eiy is independent of ¥, the last of these equations yields E, as a function of ¥;
E! E! E
E, (9) VT 2/ ~ D (6.10.8)

B 1—2cosd) 1_0_#) (1_1972> T 144292
This dependence of energy on angle is identical to that given in Eq. (6.2.35). This corrob-
orates the equivalence of undulator radiation and Compton scattered radiation.

The discussion to this point has implicitly assumed K << 1. The main effect of finite

K is described by Eq. (6.2.31) which gives the average electron velocity to be

Ty 1 K?
%%1——(1+—>, S (6.10.9)
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After this alteration, Eq. (6.10.8) becomes

B2/ 29” (he/w)
By () = Lo (1— 1Y (1—) 1+K22+202° (6.10.10)
27> 2

(Note that this formula agrees with Eq. (6.2.33).) This formula shows that increasing K
causes a reduction in peak energy by factor 1 + K?2/2, and an increase in angular width
by factor \/m However these effects have been calculated in the context of single
photon interactions and relate only to the fundamental undulator peak. As K is increased
higher harmonics become progressively more important and these can only be understood

quantum mechanically as the coherent scattering of more than one photon.



Chapter 7.
Undulator Magnet Design

7.1. Introduction

For a given storage ring, with vacuum chamber height 2¢g required (by storage ring prac-
ticalities) to exceed a value of order one centimeter, there is a practical upper limit to the
energy . of x-rays that can be produced coherently and with large flux from the multiple
poles of a symmetric undulator. This maximum energy is proportional to the square Ee2
of the beam energy. For E, = 2.9 GeV the maximum energy is something like 15keV. The
purpose of this report is to show that this upper limit can be increased substantially by us-
ing an asymmetric (defined below) undulator, and to suggest an electromagnet, permanent
magnet, hybrid design for such an undulator.

The idea, illustrated in Fig. 7.1.1, is to produce very strong magnetic fields over very
short intervals (spaced by somewhat larger intervals) in order to increase the “critical
energy” without causing excessive beam deflection. Such strong magnetic fields require an
electromagnet, but the weaker but longer, opposite sign fields (needed to cancel the overall
field integral) can be produced by permanent magnet material.

From a symmetric undulator, because of the cancellation of adjacent pole amplitudes,
only odd undulator harmonics contribute flux in the forward direction. For the asymmetric
undulator this cancellation is largely suppressed, so the fluxes from even and odd harmonics
will be comparable.

Analytic design formulas for both electromagnet and permanent magnet sections will
be given and it is argued that the fields should approximately superimpose. But the
interaction of electromagnet and permanent magnets is subtle so (obviously) a numerical

study with both fields present simulataneously will be required.
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Figure 7.1.1: Schematic illustration of coil, yoke, and permanent mag-
netic material in a hybrid, electro-/permanent-magnet, asymmetric undula-
tor. The mechanism to vary the gap height 2¢g is not shown; it will represent
quite a design challenge.

7.2. Radiation Formulas

The main purpose of a storage ring “light source” is to produce x-rays. The so-called
“critical photon energy” wu. for electon energy E. in magnetic field B is given by
3 ¢B E.[GeV]\?
= hey ) ———=B[T] | —=—=) 5.59keV. 7.2.1
e = g 17 ymec? /e 7] (2.9 (GeV] ¢ ( )
Roughly half of the radiated energy comes in the form of photons of energy exceeding ..
For energies greater than u., the probability distribution (independent variable u/u.) of

photon energies is given approximately by

AP gy &P (ZU/Uc)

d (u/uc) Vu/ue

(7.2.2)
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This factor has fallen by a factor of 35 for v = 3u., which makes 3u, a kind of upper limit
for what will be called “ideal operation”. From an undulator Eq. (7.2.2) will provide the

” of undulator resonances. In gross terms therefore (neglecting the

“envelope” of a “com
comb structure), Eq. (7.2.2) will describe the photon energy distribution, independent of
whether the radiation comes from bending magnet, wiggler or undulator. The total energy
radiated per electron per unit length, dU/dz, also depends only on the local magnetic field,
not the entire insertion device;

dU e ,( B \° 5.0 [E.[GeV]\?

From an undulator essentially all this energy potentially impinges on the physics apparatus.
From a bending magnet or wiggler the energy is spread in a broad fan, most of which must
be removed by collimation.

For B=1T, E, = 2.9 GeV the critical photon energy (5.59keV) is, roughly speaking,
at the dividing line above which x-rays are sufficiently energetic to pass through a vacuum
window without unacceptable attenuation. For present purposes let us refer to photons
with energies above 5keV as “high energy x-rays”. From Egs. (7.2.1) and (7.2.2), if we
require appreciable flux of high energy x-rays from a beam with energy FE. as low as
2.9 GeV it will be necessary to have magnetic fields of order 1T or, preferably, greater.
Such magnetic fields are at the high end, or beyond, of what is achievable with permanent
magnet material. This requires the use of electromagnets, for which B can be as high as
2T or superconducting magnets, which can have even higher fields.

Another important consideration is the extent to which “undulator” performance, in
which the amplitudes from multiple poles sum coherently, can be achieved. In this regime
essentially all the radiation is directed toward the physical apparatus using it (rather than
in a broad spray) and, as well as the enhancement factor equal to the number of poles,
there is strong forward peaking of the x-ray energies passed by a monochrometer. These

features make the undulator beam “clean”. An important parameter characterizing this

(0)

behavior is El,edge

the “edge energy” of the fundamental undulator resonance, for ideal,

K << 1 undulator operation;

2 2
o) v [ E.[GeV] lem .
Bftage = 575 = <2.9 cov) U aem ) 399kV: (7.2.4)
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(the factor 1/2 has been left explicitly in the factor Ay, /2 for later convenience in analysing
an asymmetric undulator.) This edge energy is independent of B. So, surprisingly, the
range of energies radiated coherently is independent of B (in the limit of “pure undulator
operation” K << 1.) This is somewhat academic however, as one essentially never runs
in the limit of pure undulator operation. In fact, satisfactory undulator operation can be
achieved up to K = 2 or somewhat higher, and say, n = 10 (actually 9 or 11) where n
labels the undulator harmonic. There is appreciable intensity into the higher harmonics
only for K = 1 or greater. The edge energies of general harmonics are given by

B n E. [GeV] 2 1cm
En,edge - 1 +K2/2 <29 [GeV]) <)\w/2 [cm]) 3.99keV. (725)

Since the undulator parameter K is proportional to B, the denominator factor 1 + K2 /2
causes “diminishing returns” to set in as one attempts to increase the x-ray energies by
increasing B. This sets a practical upper limit on K of order 2 or slightly higher if “clean
beam” undulator performance is to be achieved.

For a fixed value of F,, these consideration and the practicalities of magnet construc-
tion, set an upper x-ray energy limit for “clean” operation. It is necessary to reduce A, to
the extent possible, but it is impractical for \,,/2 to be less than the magnet gap height 2¢
which cannot be less than, say, 6 mm, without impairing storage ring operation. Also it is
difficult to achieve small values of A, /2 using powered magnets requiring current-carrying
coils around every pole. For the value E, = 2.9 GeV featured in the formulas given so far,
one needs values A, < 2cm, B > 1T to obtain undulator operation in the range from 5 keV
(easy) to 20 keV (hard); the most promising range of energies for “Physics Discovery”. (A
personal opinion.) Increasing E. from 2.9 GeV would, of course, pay off handsomely in
higher energy x-rays.

Formulas given in this section have assumed a “symmetric” undulator—equal pole
lengths and equal but opposite field strengths. Relaxing this requirement makes the con-

straints more easily achievable.
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7.3. A Hybrid, Electo-Permanent, Asymmetric Undulator

The stringent requirements just described can be relaxed by permitting the undulator to
be “asymmetric”, meaning that the magnetic field is strong and of one sign over a short
section and weak with opposite sign over a long section; the lengthxstrength products
must be equal if the beams from the poles are to superimpose, and the electron beam is to
suffer no net deflection. It will be argued that u. (as given by Eq. (7.2.1)) needs only to be
large in the strong field regions, and the factor A, /2 in Egs. (7.2.4) and Egs. (7.2.5) can,
roughly speaking, be replaced by w, the length of the short, strong-field poles. The large
values of B in those regions can be provided by electromagnet. The longer and weaker,
opposite sign, fields can be provided by permanent magnets. Such a magnet design is

described in this section.

A proposed hybrid, electo-permanent-magnet undulator is illustrated in Fig. 7.1.1. Its
purpose is to produce a very strong vertical magnetic field in the short gap region between
soft iron poles. The maximum X-ray energy that can be produced coherently from multiple
magnet, poles is dominated by the pole width w, which is therefore to be made as short
as possible consistent with the product Bow being sufficiently large. Since the maximum
field By is produced by an electromagnet, its value can approach 2 T. The purpose of the
permanent magnet inserts is to produce magnetic field of opposite sign, needed because
the undulator must produce no net bending. Most undulators are “symmetric” such that
north and south pole widths are equal (w = W) and the field maxima are equal but
opposite in sign. Here w << W is being permitted. Since the maximum field achievable
with permanent magnets is less than with electromagnets, and the permanent magnet has
to overcome the (small) electromagnetic field between poles, the field in the permanent
magnet sections will be less than between poles, with the result that w < W. For assessing
the X-ray energies emitted from a symmetric undulator, the undulator period A, is the
most important parameter. But for our asymmetric undulator it will be w rather than
asymmetric undulator period w+ W that governs the high energy cut-off of the radiation.
For improved field uniformity the gap height 2g should be as small as possible, but storage
ring practicalities will make it impossible to reduce 2g below some minimum value such as

6 mm.
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For purposes of first-cut design of such a magnet, a kind of superposition principle will
be assumed. First the electromagnet field between soft iron poles will be calculated ignoring
the permanent magnet material. Then the field due to the permanent magnet material
will be calculated ignoring the electromagnet. The two field components will then simply
be summed. Since ferromagnetism is thoroughly nonlinear, such superposition can only
be approximate. Two features possibly invalidating this approach are demagnetization of
the permanent magnets and saturation of the iron. Failure of superposition will be briefly
considered below. Two extreme simplifying assumptions will be that the iron permeablility

is infinite and the permanent magnet permeability is equal to the free space value py.

7.4. Electromagnet Design

For the small values of gap height 2¢ that will undoubtedly be required, the magnetic field
can be calculated by concentrating on the region between the iron pole and the magnet
centerline. Half of this region is labelled “z-plane” in the upper part Fig. 7.4.1. The
field will be calculated by conformal transformation, using the subsidiary complex w and
t planes, also shown in Fig. 7.4.1. These figures, and the subsequent analysis, are copied
from L. V. Bewley, Two-Dimensional Fields in FElectrical Engineering.

In this approach any analytic function in any of the planes automatically satisfies the
2D Laplace equation in that plane, with the real and imaginary coordinates interpreted
as Cartesian coordinates. In the u 4 iv = w-plane R(®(w)) = R(w) satisfies the boundary
conditions ®(0+iv) = 0, (U +iv) = U. ®(w) is known as the “complex, magnetic scalar

potential”, and the magnetic field components are obtained from it by

dd

— 7.4.1
=, (7.4.1)

—B, +iB, =

which is a formula that follows because both divergence and curl of B vanish. In our case
P =w.
The concatenated analytic transformation w — ¢t — z, produces the desired boundaries

and the appropriate boundary conditions in the z-plane. The tranformation w — ¢ is

t = —e imw/U — omo/U <cos U(; Y +isin U[; u7r> ) (7.4.2)
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Figure 7.4.1: Complex planes used to determine the magnetic field in
the region between one half pole and the centerline of the gap. At point
III, the corner of the pole,t=1and xr =y =v = 0.

On the boundaries this simplifies to

—em™/U 7§ =0
t = e oru=", 7.4.3

{ em/U foru =U. ( )
The inverse transformation is

g:1+£1nt:1—g—ilnp, (7.4.4)
U T T 0w

where t = pe?®. One can check that the function (w(t)) satisfies the boundary conditions

shown in the figure (U on the positive real t-axis, 0 on the negative real ¢-axis.) The

further transformation ¢ — z is given by
1 | 141 — t)
n S

_29
y=—>(V1—t—= —
Tty - ( 5 TV
2
=i (Vi1 —tan ' VE—1),

™

(7.4.5)
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where the formula option permits the argument of the square root always to be chosen
positive. Eliminating ¢ from these formulas using Eq. (7.4.2) gives transformation formulas
(u,v) — (x,y). v varies on contours of constant “potential” w, while on (orthogonal) field
lines u varies and v is constant. Egs. (7.4.5) therefore give the equations of both sets of

curves in parametric form. Explicitly, the upper formula becomes

) -2 1 1 1 — U
$+2y:—\/1+exp(—i7rw/U)+ In 1+ exp (Zinw/U)

g ™ T 1—/1+exp(—inw/U) (7.4.6)

On the boundaries, the formulas reduce to

2
y:—\/em/U 1——tan LVem/U -1 1<t,0<v,w=U+iv, pole side,
g m
—2 1. 1+V1—em/U
r_ —= 1 —em/Uy Z In + ¢ , 0<t<l,u<0,w=U+1iv, pole face,
g s T 1 —+/1 —em/U

t <0,w=1v, centerline.

2 il g L LV e
= eﬂ- —
T m 1 -1+ em/U
(7.4.7)

The third of these relations is plotted in Fig. 7.4.2 and Fig. 7.4.3 shows a complete field

plot.
Using Eq. (7.4.1) the field is given by

d
B, —iB, = —d—lz"; (7.4.8)

In the process of deriving these transformations these two derivatives appeared:

d Vi—1 d 1
=4 w_;Y (7.4.9)
™

ar !

- =1— .
t 7 dt Tt

We therefore have

bowip — (W) (dwde\ _ (U Y
v v dz ) dt dz) gVt —1

7.4.10
U [ v U-u . U-u 12 (7.4.10)
= — |e cos T — ¢ sin m)—1
g U U
We are primarily interested in the value of B, along the centerline where u = 0;
B 1
v _ (7.4.11)

U 1/1_+_e7rv/U7
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X versus v along centerline

-2/pi*(sqrt(1+exp(pi*v)) - 0.5%log( (1+sfqrt(1+exp(pi*v)))/(-1+sqrt(1+exp(pi*6/)%)'j3)§ -

field line through corner of pole

x/g

v/U

Figure 7.4.2: Relation between x and v along the centerline. Note that
the v = 0 contour (the one leaving the corner of the pole) intersects the
centerline at a slightly negative value of x = —0.333g. As v becomes more
positive, the constant v contour bulges out more and more (i.e. x becomes
increasingly negative.)

and along the pole face where u = U;

B 1
gg - = (7.4.12)
The absolute value of the magnetic field is given by
% = [eQW/U —2e™/U ¢os U(; Yr _1/4. (7.4.13)
Substituting from Eq. (7.4.11) into the third of Eqs. (7.4.7) yields
g = _?2 (Big - % In %) , t<0, along the centerline. (7.4.14)
y y

The inverse of this formula gives the magnetic field profile along the centerline of the
magnet; it is plotted in Fig. 7.4.4. Because x = 0 corresponds to the pole edge, rather

than the pole center, it is necessary to specify the position of the pole center. For a wide
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Figure 7.4.3: Field plot for the ranges 0 < u < 1, -1 < v < 1. By
the spacing between curves of constant v the field magnitude at (0,2g) is
roughly one fifth of the field in the gap. This suggests that D/g should be
at least 2 or g/D should be less than 0.5.

pole (in appropriate units) B,g/U approaches 1 in the interior of the pole. Since we want
the pole to be as slender as possible a choice, such as shown in the figure, with full pole
width equal to full gap 2¢g seems appropriate since the field is within 2% of its full value
at = —g. In the spirit of making o, as small as possible this is an aggressively small
choice. But an even somewhat smaller choice could be made without much loss of central
field relative to nominal.
Also plotted in Fig. 7.4.4 is an empirical (Gaussian) fit of the form
B, = Bnom. (—7(5” — “’42)2) : (7.4.15)
g 2(1.6)° g2

This is an extremely crude fit, that doesn’t properly combine the pole width and field
spreading in the gap except at the one point where the fit was made. So it can be expected
to give the dependence on g over only a very small range. More properly the parameters

should be fit for various values of g holding w fixed. Of course saturation also invalidates
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X versus B along centerline

possible ipole center
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Figure 7.4.4: Magnetic field profile along the centerline due to one half
pole. The pole edge is at © = 0. The pole width can be as little as 2g (the
case shown) with only 2% field reduction from the nominal (thick pole)
value. Also shown is a Gaussian fit that applies for this particular choice
of pole width.

the formula for small g. Nevertheless, for subsequent calculations, I will use the value

o, =169, (eé' 0.51 cm for 2g = 0.6 cm.> (7.4.16)

7.5. Permanent Magnet Design—Small Gap Limit

The magnetic field in the permanent magnet sections can be estimated while referring
to Fig. 7.5.1. Assuming constant magnetization M (directed up in the figure) within
the permanent magnet material, the permanent magnet block can be modelled by bound
surface current densities M flowing in and out of the page. In this picture the material
itself is replaced by free space, of permeability py. The B-field will therefore resemble
that of a rectangular solenoid, more or less uniform in the interior of these current sheets.

Assuming g << W the outward bowing of the fields in the gap region should be modest
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Figure 7.5.1: Two adjacent permanent magnet sections, separated by
an iron pole, are shown. The Ampere loop links the “bound” current of
the permanent magnet and the “image” current in the iron, but no “free”
current.

and will be neglected. As a result

B, = Bp, (7.5.1)

where subscripts g and m stand for “gap” and “magnetic material”; also B,, will be the
magnetic field between the iron poles (which is currently being neglected.) Treating the
iron as ideal, there is no contribution within the iron region to the Amperian loop integral

along the path shown so this loop links zero true current.T From this and Eq. (7.5.1) the

t In fact the Ampere loop also links the current in the main dipole coil, but I am assuming D >> g,
and hence that negligible flux from the main coil actually passes through the permanent magnet blocks.
Of course this is wrong, especially adjacent to the corners of the iron poles where the “fringe fields” pass
through the corners of the permanent magnet blocks. In the present approximation this is being neglected.
It will be (crudely) accounted for later. The error becomes fractionally less significant for W >> w. Since
one will be striving to make B,, as large as possible it may be necessary, for obtainable magnet material,
even to allow the magnet block corners to be demagnetized by the main dipole current. This may make it
tricky to maintain zero field integral, because of hysteresis, for example, as the gap height is changed. At
worst the beam steering caused by the device can be adjusted empirically to zero by varying the main dipole
current while viewing the closed orbit in the storage ring.
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equation of the “load line” is obtained;

D
2gH,+2DHp, =0, so By =—— pugHy. (7.5.2)
9
Dig = 2 3 4 681020
15
e
1.2
1 \
\ By(T)
SmCoy; 1.0
SmCos (25 OC)O 9
T\ X)) smCos (100 C©)
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0.7 e
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Figure 7.5.2: (a) Demagnetization curves for various permanent magnet
materials. From P. Campbell, Permanent Magnet Materials and Their
Applicatation, Cambridge University Press, 1994. Also shown are load
lines given by Eq. (7.5.2) and their intersections with the SmCojs load line
for various values of D/g. The dashed curve gives the magnetization pgM.
(b) The corresponding dependence of By, the field in the gap, on g/D.

Load lines for various values of D/g are plotted in Fig. 7.5.2. Also shown are their
intersections with the demagnetization curve for SmCos. This seems to be the material of
choice because of its extremely large value of coercive force, which is the intersection of the
dashed curve with the horizontal axis; in the units of the figure the intercept is at about
2 T. Maximizing this parameter will minimize the problem of irreversible demagnetization
due to the electromagnet field.

Demagnetization curves for other materials are also shown. By using NdFeB, fields

almost 50% higher could be achieved. But there seems to be little reason to push for

1.0
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the highest possible field, since this would only reduce the ratio W/w proportionally.
This would permit more complete periods per unit length of undulator, and hence higher
total flux, but it would also exaggerate importance of the problematical regions close to
the iron poles, both because of demagnification and their greater fractional importance.

Fig. 7.5.2(b) shows the dependence of B, on g/D. A polynomial fit to the data is

B, [T] = 0.8704 — 0.7359 (9/D) + 0.2974 (¢/D)* . (7.5.3)

7.6. Combined Electro- and Permanent-Magnet Fields

Fig. 7.5.2 suggests that the peak field at minimum g can be By ~ 0.8 T, with g/D = 0.1.
However the dependence of By on g is rather weak at this point; the dependence is slower
than the 1/g dependence of the iron pole fields. This suggests that the operating point
should be chosen closer to the center of the range shown in Fig. 7.5.2(b). Tentatively I
take g/D = 0.25 and therefore B, = 0.7. Then, selecting B,, = 1.6 T would seem to
require W/w ~ 2.5. But the “stray flux” through the permanent magnet material from
the electromagnet has been ignored. A feeble attempt to estimate this effect is indicated
by the dotted line labelled “no pole line” in Fig. 7.5.2. If there were no iron poles then,
effectively the gap would be five times greater and the B-field five times less, or about 0.3 T.
This reduces the permanent magnet field by roughly 1/3. Furthermore the reduction in
the corners is even greater. To compensate I select W/w =~ 5. These tentative choices are

indicated in Fig. 7.6.1.

7.7. Estimated High Energy X-Ray Flux

In the high energy region this undulator is intended to service the flux will be dominated
by the high field regions. According to Eq. (7.4.15) the magnetic field in these regions is
given by

212
B (z) = By exp (_W> . (7.7.1)

I will neglect all fields other than this. From Eq. (7.2.1), assuming a field By = 1.6 T
can be achieved, the critical energy will be u. &~ 9keV and there will be “ideal” (defined
above) flux up to about 27 keV.
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Figure 7.6.1: Pole profile of the asymmetric undulator. The relative
dimensions shown are a tentative starting point for a more careful analysis
that accounts for the interaction of electro and permanent magnet effects.
The electromagnet coils are shown schematically only as a reminder of their
presence.

One can introduce a kind of symmetric “comparison undulator” for which the fields

within one half period more or less match Eq. (7.7.1). Its undulator wavelength would be
Aw,comp. & 2o, = 1.67 (2g), ( £ 3cm for 29 = 6mm.) (7.7.2)

The comparison K value would then be

Keomp. = 0.934 By [T] Aw comp. [cm] ( & 98 By |T] for 29 = 6mm,>
. (7.7.3)
( £ 4.6 for By = 1.6[T] )
This comfortably exceeds anything one would need in practice. Compared to the compar-
ison undulator, the total power radiated from the asymmetric undulator of the same total

length will be reduced by a factor equal to twice the ratio of periods (the ratio of poles

per unit length)
Nasym. _1 Awcomp. 1 1.6m (2g)
Ncomp. 2w+ W 2 2g + 10g

In calculating post-monochrometer beam brilliance this factor may have to be squared to

0.4. (7.7.4)

account for the reduced number of poles. As mentioned before, the fluxes into even and
odd undulator harmonics will be comparable. This means the flux into any particular odd
harmonic will be reduced by another factor of two over and above the reduction given

by Eq. (7.7.4). On the positive side of the ledger, the presence of even harmonics will
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ameliorate the problem of “holes” in the spectrum; a nuisance associated with running in

the low order harmonic region.



Chapter 8.
The Microwave Undulator

Essentially all existing wigglers and undulators are made using conventional magnets,
either electromagnets or permanent magnets. Nevertheless, in this chapter, the concen-
tration will be on a “microwave undulator”. This relies heavily on the content of the
previous chapter, which describes features that are common to any undulator or wiggler.
This chapters uses material that was written to advocate the development of a microwave
undulator at CESR. The following abstract summarizes the content of the chapter.

Abstract. High order diffraction maxima from a magnetic undulator can extend the
spectrum produced in a synchrotron X-ray source to high energy, but the resulting beam
has (undesirably) high power relative to the flux of useful X-rays. Making the undulator
period short can concentrate the beam power in the useful spectral range, but a magnetic
undulator with ideal radiation properties usually has a gap height too small for satisfactory
operation at existing storage rings. To overcome these limitations it is here proposed
to replace the magnetic undulator field by an electromagnetic wave, propagating in a
waveguide that serves also as the accelerator vacuum pipe. Because the “undulator” can
pass through lattice focusing elements, it can be long yet inexpensive. For achievable
microwave power, flux and brilliance can be achieved up to (almost) the limit that defines
ideal undulator operation. By controlling microwave properties, the energy, flux, and
state of polarization of the X-ray beam can be tuned (within microseconds) independent
of storage ring parameters, and without disrupting the circulating beam. The controls
for these parameters can therefore be put in the hands of the separate experimenters in
separate beam lines. A possible design is given for an X-ray source centered on 12.4keV
X-ray energy, along with numerical estimates of its expected performance at the Cornell
Electron Storage Ring (CESR), modified to maximize brilliance, and running at 5.1 GeV.
The radiation from this system is analysed both classically, as undulator radiation, and

quantum mechanically, as Compton scattering.

- 191 -
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8.1. Introduction

The narrow band of energies, mentioned in the abstract as being ideal for X-ray diffraction,
is limited on the high energy side by difficulty in making optical elements in that range,
by excessive heating, by longterm damage, and by unwelcome backgrounds. The low
energy limit is due to excessive attenuation in vacuum windows, protective covers and thick
samples. The attenuation length of few keV photons is so short as to cause unacceptable
attenuation but, because of the extremely rapid energy dependence of attenuation length,
a factor of ten increase in energy largely overcomes this problem. One therefore seeks a
photon beam centered on, say, F, = 12.4 keV,]L as brilliant as possible, consistent with
being as monochromatic as possible. The use of undulators to produce beams of this
sort at electron storage rings is by now well understood, but the undulator period is too
short to be practical for most storage rings. The apparatus proposed here is intended to
supercede such an undulator in order to produce a beam that has brilliance, large both on
an absolute basis and relative to total beam power, and is non-intrusive on the circulating
beam.

It is difficult for A, to be small enough to satisfy Eq. (6.1.1) because of the inevitable
fringing between the poles and a correspondingly too-small gap height requirement. One
can contemplate using higher order interference maxima but, since the electron’s trajectory
through a standard undulator is essentially sinusoidal, the higher orders are extremely
weak. The apparatus proposed to overcome the disadvantages of conventional is shown in
Fig. 8.1.1.

As illustrated also in Fig. 8.1.2 our microwave undulator consists of a powerful mi-
crowave beam, propagating in a rectangular waveguide, through which the bunch of elec-
trons or positrons passes. Depending on the propagation mode in the waveguide and
whether the beam is a traveling or a standing wave, the microwave beam can be idealized
as a superposition of two, four, or eight monochromatic plane waves. There is a close
analogy between a conventional magnetostatic undulator and a standing wave beam, since
the spatial dependence of their deflecting fields (at fixed time) are the same. But, to

the extent the electron and microwave beams are parallel, the transverse force due to the

T The choice of E, = 12.4keV as nominal energy corresponds to a wavelength A, = 14 and to the
(mnemonic) approximation 14 — 12345eV.
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Figure 8.1.1: Microwaves in the “undulator” collide with circulating
electrons. The useful microwaves propagate approximately anti-parallel to
the electrons.

parallel-traveling beams are negligible (because electric and magnetic forces cancel) and, to
calculate the X-ray production, it is only necessary to consider the anti-parallel microwave
beam. Any one of these anti-parallel fields is characterized by “guide wavelength” A4, and
its fields depend on position and time as cos(2mz/Ag —wyt). For an electron whose position
is given by z = —wvt (where v ~ ¢) the field dependence is cos((27/\y + wyf/v)z), which

implies

+ (8.1.1)

B 1 1
Ao Ay v TN A
yielding “effective wiggler wavelength” A, in terms of Ay and “free space wavelength” Ay.
For waves traveling approximately parallel to the guide axis, this yields A, &~ A;/2. So
our nominal 12.4 keV energy, requires an RF generator yielding free space wavelength

At & 2Ay = 4cm, ie. 7.5 GHz. Corresponding to Eq. (6.2.13) we have

Ao 1 Aghg

_w_ - 79t 1.2
2 2T Ag+ Ayt (8.1.2)

Oz
For our nominal 12.4keV energy, o, = 1/mcm. In practice, we anticipate A\; ~ Ay and

therefore o, &~ A\;¢/(47).

For purposes of estimating X-ray beam fluxes using traveling waves, we can use tradi-
tional undulator formulas with undulator period A, given by Eq. (8.1.1). In this picture
the microwave beam is treated (classically) as an external force field that causes electrons

to oscillate transversely. The analysis of the next few sections will therefore apply equally
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incident  bunch of 7
Sﬁﬁlé%ﬁd electron  electrons
o \%/ = %Q:\/ x (photon) in
N = microwave beam
incident scattered T .
photon electron waveguide

Figure 8.1.2: Microwave undulator configuration. An electron beam
collides with a traveling (or standing) microwave beam. The microwave
beam can be thought of as a superposition of plane waves that reflect
repeatedly off the conducting walls of the waveguide.

to conventional undulators and wigglers, and language from the latter field will be em-
ployed.Jr Later, when the radiation is calculated quantum mechanically, the microwave

beam will have to be treated as the appropriate superposition of plane waves.

8.2. Radiation Intensity From Microwave Undulator

Certain intensity limits are inherent to the ideal operation of an undulator. Based on
Eq. (6.2.34), the maximum deflection angle satisfies A® < 1/(2y) = 0.05mr, a fairly
modest angle. But, since this deflection occurs over a short length, the local curvature
may be substantial. The maximum total energy radiated, as a fraction of radiation per
turn, can be related to A® using Eq. (6.2.17);
Utot _ 2Nw Ry \ o <e§. 2N, 90 _ 1078

= —0F — = X
Uy w32 o, 2713/2 0.01 4

What makes the undulator promising, in spite of this relatively low upper limit, is the

~ 0.4 x107° (2Nw)> : (8.2.1)

“short magnet enhancement” T that shifts all the radiated energy into a narrow high en-

ergy band. As well as the factor 2V, explicitly exibited in Eq. (8.2.1), the beam brilliance

f In fact, the next few sections amount to being a tutorial on convevtional undulators.

T It is this short magnet enhancement that enables the CERN proton ring diagnostics, referred to previ-
ously. In their case (because they have protons) the rate of visible photons is enhanced by some 23 orders of
magnitude (according to Coisson.) This gigantic enhancement is possible only because of the large proton
to electron mass ratio. For an electron ring like CESR, since the critical energy u. is already in the few keV
range, the enhancement is enormously less; the energy radiated per unit energy for v = 4u, is roughly ten
times less than for u = wu,, so the number of photons radiated per unit energy falls by about 40 over the
same range.
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acquires another factor 2V, from the diffractive line narrowing. It seems therefore, that
one need not be unduly discouraged concerning the intensity limit that follows from con-
dition (6.2.34).

For the microwave undulator the maximum achievable deflection is determined by the
maximum power P propagating along the waveguide. For propagation in the TE;p mode

(which is the propagating mode with lowest cut-off frequency) the power is given by!?

Frmax|? 2
P:| e 1—<ﬂ> (8.2.2)

Z() 2 2a
where Zy = \/po/e€p = 3770ohms, Epax is the maximum electic field, and a and b are

waveguide dimensions. The wave can be represented as the sum of two waves, directed at
angles # on one or other side the axis, where
cosf =4/1— (%)2 . (8.2.3)
In this mode the cut-off wavelength is 2a. Since we favor waves propagating more or less
parallel to the waveguide axis, << 7, we will have A\;y << 2a, so the square root factor in
Eq. (8.2.2) will be approximately 1. For example, a = Ay will yield cos @ = 0.866, 6 = 30°.
The total deflection per half period also depends on the particular waveguide propaga-
tion mode but, for simplicity, let us consider only the case of propagation exactly parallel
to the waveguide axis. (As a matter of fact, there is no such mode, but short wavelength
modes can propagate approximately parallel to the guide.) The motion of a charged par-
ticle in an electromagnetic wave is analyzed in Appendix A. According to Eq. (A.19), the
maximum deflection angle is given by

d_l' d_(I) ~ 2wt € Bmax . 1 Af Frax _ l ﬁ Emax (MV/m) (8 9 4)
AP lmax dz Ty 2 0.511MV o

Since RF field gradients as high as 100 MV /m are physically achievable (if only for brief

AB =

¢ Lmws v 21 mc?/e

pulses) it is possible to briefly achieve deflections A® ~ 1/v, which is as large as is
consistent with ideal undulator operation.

But, for CW operation, it is more meaningful to relate A© to microwave power. To
avoid the extravagance of supporting CW power P, it is sensible to establish a standing

wave patternT in a (long) waveguide resonator of length L,,. There is a possible advantage

t A ring resonator configuration could support only forward-traveling waves, with similar power considerations.
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to making this tube circular, so that arbitrarily-polarized, linear, circular, etc., waves could
be established. But, to simplify the discussion, we are considering only a rectangular tube
of width a and height b, carrying the TE;g mode. Using a superconducting RF cavity
may also be attractive, but the following numerical estimate will assume the waveguide is
made of room temperature copper. This choice would be especially convenient because the
waveguide could be continuous through the magnets making up the beam line, and hence
could be made almost arbitrarily long without disrupting the lattice optics seriously.

The power P(z) of a wave propagating in the 4z direction in a waveguide satisfies

—— = 2aP 2.
- aP (8.2.5)

which means that 2aP can be interpreted as the power per meter flowing into the walls.
Neglecting end losses, the external power Pey¢ required to maintain a standing wave (sum
of equal but opposite traveling waves) in a guide of length L,, therefore satisfies

P ext
P

- = 4L, . (8.2.6)

In the TEj9 mode « (the inverse of the distance over which £ and H fall by 1/e) is given

by
2
2b >\r
1 Vs 1+E(2af> (8.2.7)
““9 200 Aot cos 0 ’ o

where the numerical values appropriate for room temperature copper are o., = 4.0 X

107 /ohm/m and 7/(Zyo) = 7/(376.7 x 4.0 x 107) = 2.08 x 1071%m. We obtain, in this

case, using Ay = a = 0.04m, b = 0.02m,

2
2 (A
Pext. 4Ly [2.08 X 10-10 (m) 1+ 2 (2_af>

P At () cos 0

eg 4Ly (m) [2.08x10710 1.25 L, (m)
~0.02(m) 0.04 0.866  48.1 (m)

Returning to the estimate of radiated power, using Eq. (8.2.2) and Eq. (8.2.8), A®? can

(8.2.8)

be expressed as

AG?~ L 1 1A% P <N 1 1 A} Pew. (MW) 48.1 (m) >
~ ~ 2 .
v 2

7 J1— (ﬂy 202 ab (me2/e)’ |Zg
2a

72 ab 693.1MW Ly, (m)

(8.2.9)
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For an external power level Put =~ 1 MW, this factor will be about 1073 / ~2. In this case
the X-ray flux per unit length will be less than from a K =1 (the largest value consistent
with “ideal” behavior) undulator by a factor of one thousand. For a superconducting
waveguide this factor could be much closer to one. In absolute terms, from Eq. (8.2.1),

the total radiated power is given by

U 2N, Ry 1 1 A2 P
—tot _ 22w 20 if (8.2.10)

Uy 2772 o, 2 i _ (ﬂy ab (me2/e)? | Zy
2a

The power radiated from an undulator of length L,, = N, can be estimated by recalling

that the pure antiparallel assumption leads to A, ~ 2A;s and o, ~ A;¢/(47). With these
approximations we obtain for Uiy, the power radiated by a single electron,

Uot = 4 LyRy 1 Poy (MW) P
Uy w2 ab 2 693.1MW Py

(8.2.11)

Since the final factor causes this to be independent of L,,, contrary to what one might
have expected, the power of the produced X-ray beam (per unit of external microwave
power) will be independent of L,,. Nevertheless, high brilliance will favor large L,,. (The
formulas determining power that have been given will also become more nearly valid as
L,, is increased.)

For beam current I, the number of electrons traversing the undulator per second is
I/e = 0.62 x 10" /A/s. Because the width of the energy spectrum is inversely propor-
tional to the number of undulator periods N,, and the flux is reckoned per tenth percent
bandwidth, there is a sensitive dependence of “fAux” F’ on N,,. Let us assume that N,
though large, is small enough that the fractional energy width (at fixed angle) exceeds one
tenth percent. Then (to accuracy not better than a factor of two) the flux acquires a rough
factor N,,/103, and the flux per tenth percent bandwidth (at all energies and angles, but
with peak value hv = 12.4keV) is given by

hv e 103~ 75/2 ab hve~? 693.1MW P.g 103
°E 0 999 0.885 x 10™% x 5.11* x 10? 0.62 x 1019 Ny,
- 0.04 x 0.02 x 1.24 x 104 108 x 693.1 x 0.0208 103
1016 Ny photons/s
103 MW-A

o Ut INy 4 LyRyUpI 1 Pes (MW) P Ny

(8.2.12)

= 0.60 x
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The power ratio estimate of Eq. (8.2.8) has been used. For L,, = 10m, N, = 10/0.02,
about half of the photons will fall within the nominal 0.1% bandwidth. Taking I = 0.1 A,
the flux' (including all angles) will be

ol photons/s/0.1%BW

A =30x1
Fo1A X NV

(8.2.13)

On economic grounds a continuous power of Poy. = 1 MW would probably be tolerable
but, in practice, even “CW operation” would employ a duty factor far less than 1, so
1 MW seems like a conservative estimate for the microwave power (assuming this power
level can be supported without breakdown.) Of course it would give a big improvement
to use superconducting waveguide instead of the copper that has been assumed. Ignoring
the dependence of energy on angle, the X-ray beam power corresponding to Eq. (8.2.13)
is P 2x3x 10" x 1.24 x 10* ~ 109 eV /s at 1 MW.

For comparison purposes, Fig. 8.2.1 shows performance of a conventional, 5 mm gap,
undulator as reported by Walker.!3 This is just a crude fit, crudely extrapolated, and it
refers to operation at F, = 1.5 GeV. The flux at 12.4keV is down by about three orders of
magnitude from the value given in Eq. (8.2.13). On the other hand, the X-ray beam power,
(given in the caption to the figure) is about 10' keV/s. According to these estimates, the
flux from the microwave undulator is three orders of magnitude greater even though the

beam power is three orders of magnitude less.

8.3. Accelerator Physics Considerations

To complete the determination of intensity, brilliance, distribution functions and other pa-
rameters of the produced beam, it is necessary to address accelerator physics practicalities.
For a start, because the radiated power is so weak, it seems safe to neglect degradation of
the electron beam caused by the microwave (except due to peripheral effects such as requir-
ing too small vacuum tube dimensions or causing vacuum degradation due to microwave

heating.)

T As mentioned previously, the beam power is being accounted for as if made up of full-energy photons
so, to obtain the actual number distribution in angle and energy of photons, Eq. (8.2.13) would need to be
manipulated. Without this having been done, Eq. (8.2.13) is not very useful for making comparisons with
other X-ray sources. The symbol F’, rather than F, is intended to be a reminder of this unconventional
usage.
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CONVENTIONAL UNDULATOR FLUX, 1.5GeV
le+16

0816%eXp(-0.91%%)
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Figure 8.2.1: Fit to flux from conventional wiggler!3 operating with 5 mm
gap and beam energy E = 1.5 GeV. The straight line crudely approximates
8 diffraction maxima in the range up to 10 keV and extrapolates to 15keV.
Integrating over the distribution given in the key yields a total beam power
P ~ 10 keV/s.

One can envisage a waveguide undulator passing right through some of the magnets
making up the accelerator lattice. An example of the lattice optics of a sequence of six
minimum emittance cells, is shown in Fig. 9.4.1. An waveguide undulator as long as 15
meters could be placed within the zero-dispersion central straight section. (The purpose
of having zero dispersion is to minimize the influence of the undulator on the circulating
beam.)

It is implicitly assumed in most discussions of synchrotron radiation (including this
one) that the bend plane is horizontal and is designated as the z plane; the dominant
field component is then E,. (For the same reason) practical electron beams are usually
ribbon-shaped, with transverse sigmas related by oy, << 0,. Because of this, it could turn
out that vertical deflections would give superior performance for some purposes I leave this
as an open question, but continue to assume implicitly that the bend plane is horizontal.

For any one electron, it has been argued that the spectrum is rather insensitive to the
particle’s slope. In this sense the accelerator optics at the undulator is unimportant. It is
true however, that the spike visible in Fig. 6.2.8 is as sharp as it is because a restricted

range of angle ¥ has been assumed. Commonly one will wish to limit line broadening
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Figure 8.3.1: Six consecutive minimum emittance cells, with the second
and fifth cells modified to provide zero dispersion in the third and fourth
cells. Bending magnets, quadrupoles, and sextpoles are indicated by long
medium and short hatch marks in the schematic above the graph.

by exploiting the correlation between production angle and wavelength by limiting 4. It
therefore seems sensible to perform collimation at a large distance where the transverse
position is dominated by production angle rather than production position. A collimator
at such a position will limit the ¥ range. Such an aperture will only be effective if the

spread of electron angles is small compared to 1/7.

The spatial and angular width parameters that influence the brilliance are contained

in the product

€x €
Oy 20y 31 Oy Oyt = \/ Brta B w/ﬁyey —y-|- w/Bgcegm/ﬁyey " (8.3.1)



