NORMAL MODES

Richard Talman

Laboratory of Nuclear Studies
Cornell University
Ithaca, NY 14853

ABSTRACT

This is one packet of notes accompanying a course Mechanics and Elec-
tromagnetism in Accelerators, offered as part of the U.S. Particle Acceler-
ator School, Yale University, summer, 2002. This packet reviews (in the
form of problems to be worked) some elementary mechanics, especially the
normal modes of “linear” systems. Also the Laplace transform method is
applied to simple harmonic motion.



Problem .1. The approximate Lagrangian for an n-dimensional system with coordinates
(1,92, -,qn), valid in the vicinity of a stable equilibrium point (that can be taken to be
(0,0,...,0)) has the form

. 1 ¢ . IS
L(q,q)=T -V, where T = 2 Z MysGrds, V = 2 Z krsqrqs- (1)

r,s=1 r,s=1

It is shown in algebra courses that a linear transformation g; — y; can be found such that

T takes the form
I~
T = 5 Z myrY,,
r=1
where, in this case each “mass” m, is necessarily positive because T' is positive definite.

By judicious choice of the scale of the ¥, each “mass” can be adjusted to 1;
1 n
-2
T= 9 Z Yr- (2)
=1
For these coordinates y, the equation

dur=1 (3)
r=1

defines a surface (to be called a hypersphere). From now on we will consider only points y =
(y1,--.,Yn) lying on this sphere. Also two points u and v will be said to be “orthogonal”
if the “quadratic form” Z(u, v) defined by

n
Z(u,v)= Z Up Uy
r=1

vanishes. Being linear in both arguments Z(u,v) is said to be “bilinear”. We also define
a bilinear form V(u,v) by
n
V(u,v)= Z krsurvg,
r,s=1
where coefficients k.s have been redefined from the values given above to correspond to

the new coordinates y, so that

V(Y):%V(YJ)-



The following series of problems (adapted from Courant and Hilbert, Vol. 1, p. 37) will
lead to the conclusion that a further linear transformation y; — z; can be found that, on

the one hand, enables the equation for the sphere in Eq. (3) to retain the same form,

n
LR
r=1
and, on the other, enables V' to be expressible as a sum of squares with positive coefficients;

1 n
V:§Zm«z3, where 0 <Ky < kp—1 <... < K1 <o0. (4)

r=1
Pictorially the strategy is, having deformed the scales so that surfaces of constant 7" are
spherical and surfaces of constant V' ellipsoidal, to orient the axes to make these ellipsoids
erect. In the jargon of mechanics this process is known as “normal mode” analysis. The
“minimax” properties of the “eigenvalues” to be found have important physical implica-

tions, but we will not go into them here.

(a) Argue, for small oscillations to be stable, that V' must also be positive definite.
(b) Let z; be the point on sphere (3) for which V( aef k1) is maximum. (If there

is more than one such point pick any one arbitrarily.) Then argue that

0 < K1 < o0.

(c) Among all points that are both on sphere (3) and orthogonal to z1, let z(y
be the one for which V( def. %n(z)) is maximum. Continuing in this way show
that a series of points z1,2(y), . . . Z(y), €ach maximizing V' consistent with being
orthogonal to its predecessors is determined, and that the sequence of values,
V(zy) = %H‘,r, r=1,2,...,n, is monotonically non-increasing.

(d) Consider a point z; + e which is assumed to lie on surface (3) but with ¢
otherwise arbitrary. Next assume this point is “close to” z; in the sense that
¢ is arbitrarily small (and not necessarily positive). Since z; maximizes V it

follows that
V(z1+€(,z1+€) <O0.

Show therefore that
V (Z17 C) =0.



This implies that
V(z1,2z,) =0 for r>1,
because, other than being orthogonal to z;, ¢ is arbitrary. Finally, extend the
argument to show that
V (2y,2Zs) = KpOrs,
where the coefficients k, have been shown to satisfy the monotonic conditions
of Eq. (4) and ;5 is the usual Kronecker-6 symbol. Taking these z, as basis

vectors, an arbitrary vector z can be expressed as

n
zZ = E Zp o
r=1

In these new coordinates show that Eqgs. (1) become
1 1
L(zz)=T-V, T=g 2, V:§Zmrz3. (5)
r=1 r=1
Write and solve the Lagrange equations for coordinates z,.

Problem .2. Continuing the previous formula, in a more formal approach, the Lagrange

equations resulting from Eq. (1) are

n n
meéjs + Z krsqs = 0. (6)
s=1 s=1

These equations can be expressed compactly in matrix form,;

Mq + Kq = 0; (7)
or, assuming the existence of M~! as
4G+ M 'Kq=0; (8)
Seeking a solution of the form
g =A™t r=1,2,....n,
the result of substitution into Eq. (6) is
(MK - w?1) A = 0. (9)

These equations have non-trivial solutions for values of w that cause the determinant of

the coefficients to vanish;

MK — w?1| = 0. (10)

Correlate these “eigenvalues” with the constants k, defined in the previous problem.



Problem .3.

A A A A

Figure 1: Three beads on a stretched string. The transverse dispacements
are much exaggerated. Gravity and string mass are negligible.

Particles of mass 3m, 4m, and 3m, are spaced at uniform intervals A along a light string
of total length 4\ stretched with tension 7 and rigidly fixed at both ends. To legitimize
ignoring gravity the system is assumed to lie on a smooth horizontal table so the masses
can oscillate only horizontally. Let the horizontal displacements be x1, x2, and x3. Find
the normal modes frequencies and the corresponding normal mode oscillation “shapes”.

¢

Discuss the “symmetry” of the shapes, their “wavelengths”, and the (monotonic) relation

between frequency and number of nodes.

Already with just three degrees of freedom the eigenmode calculations are sufficiently
tedious to make some efforts at simplifying the work worthwhile. In this problem, with the
system symmetric about its mid-point it is clear that the modes will be either symmetric
or anti-symmetric and, since the antisymmetric mode vanishes at the center point, it is
characterized by a single amplitude, say y = r1 = —z3. Introducing “effective mass” and
“effective strength coefficient” the kinetic energy of the mode, necessarily proportional to
1, can be written as T = %meﬂ‘?JQ and the potential energy can be written as Vo = %keﬁyz.
The frequency of this mode is then given by wy = \/m which, by dimensional
analysis, has to be proportional to n = \/W . (The quantities Ty, V5 and wy have
been given subscript 2 because this mode has the second highest frequency.) Factoring this
expression out of Eq. (10), the dimensionless eigenvalues are the eigenfrequencies in units
of n. Complete the analysis to show that the normal mode frequencies are (wy,wy,ws) =

(1,4/2/3,4/1/6), and find the corresponding normal mode “shapes”.



Problem .4. Though the eigenmode/eigenvalue solution method employed in solving the
previous problem is the traditional method used in classical mechanics, equations of the
same form, when they arise in circuit analysis and other engineering fields, are traditionally
solved using Laplace transforms—a more robust method, it seems to me. Let us continue
the solution of the previous problem using this method. Individuals already familiar with

this method or not wishing to become so should skip this section. Here we use the notation

% (s) = /0 Y et (t) dt (11)

as the formula giving the Laplace transform Z(s), of the function of time x(t). Z(s) is
a function of the “transform variable” s (which is a complex number with positive real
part.) With this definition the Laplace transform satisfies many formulas but, for present

purposes we use only
dr
— =sz—z(0 12
= ), (12
which is easily demonstrated. Repeated application of this formula converts time deriva-
tives into functions of s and therefore converts (linear) differential equations into (linear)
algebraic equations. This will now be applied to the system described in the previous

problem.

The Lagrange equations for the beaded string shown in Fig. 1 are

3&1 4 1% (2z1 — ) =0,
0, (13)
0

4y +n? (213 — 71 — 23)

3i3 + 1” (23 — x3) =0,

Suppose the string is initially at rest but that a transverse impulse I is administered to
the first mass at ¢ = 0; as a consequence it acquires initial velocity vig = ©(0) = I/(3m).

Transforming all three equations and applying the initial conditions (the only non-vanishing

initial quantity, v, enters via Eq. (12).)
(352 + 2772) T — n*Ty =I/m,
—n*T1 + (45 + 2n%) To — 1’T3 =0, (14)

—77252 + (382 + 2772) T3 =0,



Solving these equations yields

1< 2/3 1 5/3 )

1 T0m 82+772/6+82+772+82+2772/3

_ 1 1 1

2= 10m <82+772/6_ 52+n2>’ (15)
o 2/3 1 5/3

= 10m <82 +12/6 24?2 +2772/3> '

It can be seen, except for factors +i, that the poles (as a function of s) of the transforms
of the variables, are the normal mode frequencies. This is not surprising since the deter-
minant of the coefficients in Eq. (14) is the same as the determinant entering the normal

2. Remember then, from Cramer’s rule for

mode solution, but with w? replaced with —s
the solution of linear equations, that this determinant appears in the denominators of
the solutions. For “inverting” Eq. (15) it is sufficient to know just one inverse Laplace

transformation,

1
LTh—— =e, (16)
sS—«

but it is easier to look in a table of inverse transforms to find that the terms in Eq. (15)
yield sinusoids that oscillate with the normal mode frequencies. Furthermore the “shapes”
asked for in the previous problem can be read off directly from (15) to be (2:3:2), (1:0:1),
and (1:-1:1).

When the first mass is struck at ¢ = 0 all three modes are excited and they proceed
to oscillate at their own natural frequencies, so the motion of each individual particle is
a superposition of these frequencies. Since there is no damping the system will continue
to oscillate in this superficially complicated way for ever. In practice there is always
some damping and, in general, it is different for the different modes; commonly damping
increases with frequency. In this case, after a while, the motion will be primarily in the
lowest frequency mode; if the vibrating string emits audible sound, a an increasingly pure

tone will be heard as time goes on.

Problem .5. Damped and driven simple harmonic motion. The equation of
motion of mass m, subject to restoring force —w%mfc, damping force —2Amx, and external
drive force fcos~t is

&4+ 20% + wl = icos*yt. (17)
m



(a) Show that the general solution of this equation when f =0 is

 (t) = ae™ cos (wt + ¢) (18)

where a and ¢ depend on initial conditions and w = vw? — A2. This “solution
of the homogeneous equation” is also known as “transient” since when it is
superimposed on the “driven” or “steady state” motion caused by f it will

eventually become negligible.

(b) Correlate the stability or instability of the transient solution with the sign of A.

Equivalently, after writing the solution (18) as the sum of two complex expo-
nential terms, Laplace transform them, and correlate the stability or instability
of the transient with the locations in the complex s-plane of the poles of the

Laplace transform.

(c) Assuming z(0) = #(0) = 0, show that Laplace transforming Eq. (17) yields

S 1

z(s)=f (19)

824282+ 20 + Wi
This expression has four poles, each of which leads to a complex exponential
term in the time response. To neglect transients we need only drop the terms
for which the poles are off the imaginary axis. (By part (b) they must be in
the left half-plane for stability.) To “drop” these terms it is necessary first to
isolate them by partial fraction decomposition of Eq. (19). Performing these

operations, show that the steady state solution of Eq. (17) is

x(t):i\/ ! cos (vt + ),

(w2 — 42)° + 4x2y?

where

wp — 4% — 2\yi = \/(wg - 72)2 + 4A2~2 €10

(d) The response is large only for 7 close to wy. To exploit this, defining the “small”

“frequency deviation from the natural frequency”

€ =7 — Wo,

(21)

(22)



show that 72 — w? ~ 2ew and that the approximate response is

x(t) = /

"~ 2muwy V €2 + A2

cos (vt + 9) . (23)

Find the value of € for which the amplitude of the response is reduced from its

maximum value by the factor 1/ V2.

Conservation of momentum and energy

It has been shown previously that the application of energy conservation in one dimensional
problems permits the system evolution to be expressed in terms of a single integral—
this is “reduction to quadrature”. The following problem exhibits the use of momentum
conservation to reduce a two dimensional problem to quadratures, or rather, because of

the simplicity of the configuration in this case, to a closed-form solution.

Problem .6.
A point mass m with total energy E, starting in the left half-plane, moves in the (z, y)
plane subject to potential energy function

U for x <O0;
U(m7y)_{U2 for 0 < z.

The “angle of incidence” to the interface at x = 0 is #; and the outgoing angle is #. Specify
the qualitatively different cases that are possible, depending on the relative values of the
energies, and in each case find # in terms of 6;. Show that all results can be cast in the
form of “Snell’s Law” optics if one introduces a factor /E — U(r), analogous to index of

refraction.




