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Vectors
Cartesian components of vectors

Let {e, e, e;} be three mutually perpendicular unit vectors which form a
right handed triad. Then {e, e, e;} are said to form an orthonormal basis.
The vectors satisfy:

e1] = leof =les| =1

€] X€y =€3,€] Xe3 = 69,6y X3 =€
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Vectors

We may express any vector a as a suitable combination of the unit
vectors {e, e, e;}. For example, we may write

3
a=ae+ame, +ae3 = ) ase;
i=1

where {611,612,613} are scalars, called the components of a in the basis
{e, e, ez }. The components of a have a simple physical interpretation.
For example, if we calculate the dot product a. e,, we find that

a-ep = (alel +drey +ases ) €1 =
Recall that - €] = \aHel \ cosf(a-ep)

a; =a-e; =ldcosb(a-e))
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Vectors

Thus, dp represent the projected length of the vector a in the direction
of e,. This similarly applies to 49 ,d3

Change of basis

Let a be a vector and let {e, e, e;} be a Cartesian basis. Suppose that
the components of a in the basis {e, e, e;} are known to be {ay,a,,a3}

Now, suppose that we wish to compute the components of a in a second
Cartesian basis, {r, r, r3}. This means we wish to find components

la1,00,a3}  such that A =041 T 0P +ORY3 to do so, note that
ap=a-n=aie;-n+aye, -n+azey-n
Ay =A-1) =Q1e] 1) +Qrey -1y + ez 1y
Q3 =a-ry=aie) 13 +ayey -r3 +aze; 13
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Vectors
This transformation is conveniently written as a matrix operation

a =[0]a]
where [a] IS @ matrix consisting of the components of a in the basis
{ryr, r3}, [a] IS @ matrix consisting of the components of a in the basis

{611,612,613} . and [Q] is a “rotation matrix” as follows

o a e hitey Tivey
a]=| ;| la]=|ay |[Ql=|r-e1 10y 1y-e5
@3 B gl ey ey

Using index notation O‘i — Ql]a]’ Ql] — ;/'l . ej
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Gradient of a Vector Field

Let v be a vector field in three dimensional space. The gradient of vis a
tensor field denoted by grad(v) or Vv, and is defined so that
. Wr+ea)—v(r
(V)-a = lim ( ) =)
0
for every position r in space and for every vector Q..

Let {e1, e, e3} be a Cartesian basis with origin O in three dimensional space. Let

= xlel +)C2€2 +X3€3 denote the position vector of a point in space. The
gradient of v in this basis is given by ov;  Ov, 0w

8x1 8x2 6x3
aVZ aV2 6\/2

Vv =
8x1 8x2 5)(?3
8V3 5\/3 5\/’3
i 8x1 6X2 8x3 |
ov;
[Vv]ij N 6xl
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Divergence of a Vector Field

Let v be a vector field in three dimensional space. The divergent of vis a
scalar field denoted by div(v) or Vv, and is defined so that

Formally, it is defined as trace[grad(v)].

_6\/1 6\71 6\/1
5)61 8x2 8x3 n av.
vy-|9v2 Ova Ovy Vov=Tr(Vv)=) —*
8x1 0x2 0x3 lzlﬁxl
8V3 8V3 8V3

_Oxl a.X2 8X3
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Curl of a Vector Field

Let v be a vector field in three dimensional space. The curl of vis a
vector field denoted by curl(v) or Vxv , and it is best defined in terms of
its components in a given basis.

r=X€ +)C2€2 +X3€3

Express v as a function of the components of r v = v(x,,x,,Xx53). The
curl of v in this base is then given by

& & ¢

S A (@v avzj [81/ a%] [@vz avj
ay a, &g (@, ag) (&g o) \ay &
W %oy
o,

[vv]l_ijkgk

June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 l’q’fs
3 1L



The Divergence Theorem

Let V be a closed region in three
dimensional space, bounded by an
oreintable surface S. Let n denote the
unit vector normal to S, taken so that n
points out of V. Let u be a vector field
which is continuous and has
continuous first partial derivatives in
some domain containing T. Then

| div(u)dV = [u-ndA
V S

expressed in index notation:

iy = un
,’[axidV_gulnldA
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Integrals

1
j x2e”dx
Examples
Uu=Xx 2 After integration and du=2xdx
Iy — ex differentiation, we get V= ex
1 —
(1 =x du = dx
2
jx e*dx = x’e” I2xexdx 3 —
X X

? dv —e dx v=oe¢e
1 X X 1 X 1
jxe dx=xe| —e

0 0 1
0

2 X o
i 1 | | xedi=e-2
— j x’etdx=x’e"| —2xe"| +2¢
0 0 0
0
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Integrals

_[ xtan ! (x)dx

Evaluate
” 1
_ -1 du = d.
{u—tan (x) o R
dv = xdx |
vV =—X
\ 2
| 1 | x*
xtan ' (x)dx = —x” tan " (x dx
| (x)dx = — (x) - jz e
X2 2
j S dx = Jx +121dx=J(1— : 2ja’x:x—tan1(x)+C
1+ x? 1+ x 1+ x
1 1 2 | 1
j xtan  (x)dx = — 2 tan (x)—5+5tan (x)+C
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Integrals — trig substitution

Evaluate jx3\/4 — xzdx
set x =2sin(t) = dx = 2cos(t)dx

[x'\4—xdx = [8sin’(¢)/4 —4sin’ (t)2 cos(t)dt
[x'\/4 —x’dx =32sin’ (t)cos’ (t)dt

: sin’(¢)cos”(¢)dt = j (1—cos’(¢))cos”(¢)sin(¢)dt
v =cos(t) = dv = —sin(t)dt

3 5

[(1=cos’(£)) cos’ () sin(r)dr = —[ (1 - v*)v'dv = ‘%+%+ C
[ x4 = x"dx :—32%+32%+C =—4(4_3x )4 (4_;6 i c
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Matrices

,
djp dip i3 a14\

Consider J = (i Qyy Qry Aoy

\d31 d3p d33 U3y

J s 3x4 matrix composed of 3 rows and 4 columns.

When the numbers of rows and columns are equal, the matrix is called a square
matrix. A square matrix of order n is an (nxn) matrix.
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Matrices operation

Vector, pz[a b C d] is a 1x4 row matrix.

k

Vector, q T is a4x1 column matrix.

/
m
_n_
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Matrices operation

1. Addition - m
a p

consider P =

M T

then7 = P+ Q1s a 2 x 2 matrix with :

and Q =

Ly i | .
Iy Iy ]
tyy=H+c, ty=y+d
a+a [+b]
T =
u+c y+d
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Matrices operation

a b| [da Wb

¢ d| A M
,

1_

A

IS2x 2 identity matrix

June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 lg‘lg
16 T



Matrices operation

aad +bf +cv
da+eff + fv

—
2x1

J
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Matrices operation

An n x n matrix A is called invertible iif there exists an n x n matrix B such that

AB=BA=1,
2 3 -1 3/2
A= and B =
MR
1 O
AB = BA = =1,
0 1

notation AA'=A47'4 = [, (A1s anxn matrix)

(A1) = 4 (4B) = B4
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Matrices operation

Let A be a n x m matrix defined by o then the transpose of A, denoted

ATis the m x n matrix defined by 5; where §,= a;.

1. (X+Y)T=XT+YT
2. (XY)T=YTXT
3. (XT)T=X
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Matrices operation

Consider a square matrix A and define the sequence of matrices

1 | 1 1
A =1 +—A+—A"+— A +.. +—A4"
1! 2! 3! n!
as n — oo,
1 1 1 1
T 4—A+—A*+—A +. . +—A"+
I! 2! 3! n!
one can write this 1n series notation as
A o0
e’ =) —4"
Z n!
n=0
June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 lﬂ’l‘h
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Matrices operation

Determinants
a b
Consider the matrix A= c d . Ais invertible if and only if ad—bc#0

This number is called the determinant of A.

a b a b a b
Determinant of (c d] = det(c dj = . d| =ad — bc.
Properties:

» la b |la O a b c d
detA:detA . — :ad , —

0 d |b d c d a b
Aa Ab b b
A" 71=lY 7 det(4B)= det(4)det(B)
c d c dl |lc Ad
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Matrices operation

In general,

j=n

det(A) — Z al]Al] for any fixed i
=1
I=n

det (A) = Z ai]- Aij for any fixed j
i=1

d e
g h

d f
g k

ef_b
h k

+ C

e & S
= Q0 O

c
f|=a
k
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Eigenvalues and Eigenvectors

Let A be a square matrix. A non-zero vector C is called an
eigenvector of A iff 4 a number (real or complex) 3 53 4C = AC

If A exists, it is called an eigenvalue of A.

A =

(1
6

1

2
—1
-2

1)
0

_1/

where C,

June 16, 2003
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6 ,sz 2 ,andC3:
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Computing eigenvalues

AC = AC
Al ,C=,C = Al ,C—Al,C =0
(41, —AI,)C=0 =(4-A,)C =0

This is a linear system for which the matrix coefficientis 4 — ﬂ,]n :

This system has one solution if and only if the matrix coefficient is
invertible,l.e. det(A-AI,)#0

Since the zero-vector is a solution and C is not the zero vector, we must
have

det(A -1, )=0
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Computing eigenvalues
Consider matrix A:

)
A:( ijde—iQ%ﬂ)

1-4 -2
= =(1-4)(0-4)-4=0
0000
which is equivalent to the quadratic equation
A—=21-4=0

1+\E l—ﬁ
2

solutions : A = ,and A =

June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 !}H‘S
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Computing Eigenvalues

det(d— Al )=det(d— AL ) =det(4” - A1)

a
for any square matrix of order?2, A= (

b
c d

the charaderistic polynomialis given by

a—A~A

C

b
d—A

=(a-A)(d—-A1)—bc=0

= A’ —(a+b)A+ad —bc=0.
The number(a +b)is called the trace of A (denoted tr(A)) |
and (ad - be) is the Determinant of A. A7 —tr(A)A+det(4) =0.

June 16, 2003
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Complex Variables

Standard notation: > = yx 4 ly — 7"

x,v,r,and 0 arereal,i’ =—1

where , .
and e’ =cos@ +isin@

xand y are the real (Re z) and imaginary (Im z) part of z, respectively.

y = ‘Z‘ is the magnitude, and | @ is the phase or argument arg z.

Im 7

<
Y

X Re 7
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Complex Variables

The complex conjugate of z is denoted by z'; z'=x-iy.
A function W(z) of the complex variable z is itself a complex number
whose real and imaginary parts U and V depend on the position of z in
the xy-plane. W(z) = U(x,y) + iV(x,y).
2 . 2 2 2 .
W(z)=z =(x+iy) =x —y +2ixy
2 2
U=x -y V =2xy

or W =2z =re”
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Complex Functions

1. Exponential

exp(z)=e” with z=x+iy

exp(z) = e (cos y +isin y)
d

Eexp(z) =exp(z)

if z=x+1iy and w=u+iv, then

exp(z +w) = e U [cos(y +v)+ism(y+ y)]
=Xt [cos Y C€osVv—sin ysin v+ i(sin y cosv+ cos ysin v)]
= e* e (cos y +isin y)(cos v +isinv)
= exp(z) exp(w)

June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 lﬂ%ﬁ
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Complex Functions

Circuit problem E
S . V. =RI
/ L e L _, i
% R L7
adVv
- C Z—
‘e dt

V(t)= Asin(wt+ @) = V = Im( 4de'?e'®) = Im( Be'”")
[ = Im(Ce'™")

d .. |
— Ae'” =iwde'”. if I=>be'",

dt
/

=V =iwlLl (forinductor)and iwVC=1,orV = v for a capacitor.
I

UCSB -June 2003 l!(lul's
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Complex Functions

Kirchoff's law: -
iw LI + 'IC + RI = qge '®! (E . eiwt) —O—.ﬂ.ﬂ.ﬂ.ﬂ.ﬂ_/—
iw -
. b / L -
iwLb + o C + Rb = a % R C
= b = a 1
R + Z(O)L — j
o C
a oL — !
b = e, tan ¢ = ® C

I = Im( be ia)t) = Im a ei(a)t+¢)

\/R2+(a)Llj2
w C
= 2sin( ot + @)

\/R2+(COL_0)ICJ

June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 la’lg
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Differential Equations

18t order DE has the following
form:

Yy P(x)y = q(x)
dx

j u(x)g(x)+C
u(x)
U(x) is called the integrating factor. M(X) = equp(X)dX)

The general solution is given by —
y o ’

June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 !3)”!‘3
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Differential Equations

Example 1

Find the particular solution of )/ +tan(x)y = cos*(x), ¥(0)=2.

e step 1: identify p(x) and q(x).
p(x)=tan(x) and q(x)=cos’(x)

e step 2: Evaluate the integrating factor

u(x) — ejtan(x)dx — e—ln(cos(x)) — eln(sec(x)) — Sec(x)
e \We have
j sec(x)cos (x)dx = j cos(x)dx = sin(x)
p = SOFC G0+ C)eos(x), 1(0)=C =2
sec(x)

y = (sin(x) + 2)cos(x)

June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 la’lg
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Differential Equations

Example 2

Find solution tp

cos’(¢)sin(t)y' =—cos’(t)y+1, y(z/4)=
Rewrite the equation:

, cos’ (1) 1 cos(?) 1

= oyt =yt ;
cos’(?)sin(z)”  cos’(¢)sin(z) sin(¢)©  cos’(¢)sin(¢)

Y cos(f) 1

: Y= :
sin(?) cos’ (¢)sin(?)
Hence the integration factor is given by

cos( ¢ )

ol : .
u(t) =e 0 g0l sin( ¢)

June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 la’lg
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Differential Equations

Example 2
The general solution can be obtained as
. 1
[sin(t)—5———dt+C
cos (¢)sin(z)
V= ;
sin(?)
Since we have
. 1

sin(?) ——dt = dt = tan(t)

j cos’(¢)sin(?) I cos’ (¢) ’
June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 lﬁ'&
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Differential Equations

Example 2

We get

_tan(f)+C 1 N C
~ sin(¢)  cos(t) sin(?)

=sec(t)+ C csc(t)

72- —_—
The initial condition y(z) =0 implies

V2+C\2=0,=C=-1

y(t) =sec(t)—csc(t)

June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 !J)”I‘a
36 o



Separation of Variables-PDE

This method can be applied to partial differential equations,
especially with constant coefficients in the equation. Consider one-
dim wave equation:

Zt’;‘ =’ Z ’;’ ., u(x,t)is the displacement (deflection) of the stretched string.
X
u(0,)=0 u(L,1)=0 V¢t (BCY) i/\ J
. F
u(x,0)=/(x) and E(X’O): gx)  (cy) X=0 XL
Basic idea:

1.  Apply the method of separation to obtain two ordinary DE’s
2. Determine the solutions that satisfy the bc's.

3. Use Fourier series to superimpose the solutions to get final
solution that satisfies both the wave equation and the initial
conditions.

June 16, 2003 Microwave Physigs and Techniques UCSB -June 2003 !3)”!‘3
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Separation of Variables-PDE

We seek a solution of the form
u(x,t)=X(x)T(2)

Differentiating, we get

Ou : 0 ( Ou 0’u -
- =Xt = 5(5) = -5 = X(O)T@)
and

ou , %) ou _ azu _ "
= XWTH = ax(ax)— S - X (DT

Thus the wave equation becomes
) 1 .
X' (xX)T() = = X(x)T(@),

dividing by the product X(x)T(t)

X" T
=
X T
June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 !3)”!‘3
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Separation of Variables-PDE

X" T

— =——=constant =¢
X c’T

X"=¢X

T=cT

We allow the constant to take any value and then show that only certain
values are allowed to satisfy the boundary conditions. We consider the

three possible cases for ¢, namely C:p2 positive, C=0,and C‘:—pZ.
These give us three distinct types of solution that are restricted by the
Initial and boundary conditions.

X"=0 = X(x)=Ax+B
T=0 =T(t)=Dt+E

With C=0

June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 !3’(3
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Separation of Variables-PDE

c=p’
X”—p2X — O
T—czpzT =0

X(x)=e™, = X'"(x)= 2™ = 1 X(x)
/12X—p2X:O, :>/12:p2 = A=*p
Solution:

X(x)=Aet* + Be ¥

BC’s in x=A=0, B=0. Trivial solution

June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 !J)”l‘a
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Separation of Variables-PDE
C=— p2
X"+ p*X =0
T+c? pzT =0
X(x) = ™
where A% = —p2 —> A=+ip
Thusthe solutionis  X(x) = Acos px+ Bsin px
BCatx=0=4=0, atx=L X(L)=Bsin pL
if B =0, we havethe trivial solution.Non- trivial solution=>sin pL =0
= pL =nm, nisaninteger.
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Separation of Variables-PDE

Similarly;
T(¢) = D cos pct + E sin pct
p =nx/L. Thus, a solution for u(x,t) is
nic nic

u(x,t) = Asmmx(D cost+Esmtj
L L L

u(x,r) = Zsmx(D cos@tJrE sinmt)
L L L

We can set A=1 without any loss of generality.
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Separation of Variables-PDE

. nTm
Applying IC’s. Setting t=0.  u(x,0) = Z D, sin —~ ¥

n=1
since sin(0) =0 and cos(0) =1,

ni

f(x)= ngn sin Tx

To determine the constants, D, we multiply both sides of the equation

by sin”* , and integrate from x=0 to x=L.

N

jf(x)sm—xdx I[ZD sin—xsin%x dx.
J
A

jf(x)sm—xdx jD sinﬂxsinm—ﬂx dx
n=1 L L )
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Separation of Variables-PDE
Usmg orthogonality condition:

L

xX)sin T xdx = —.

j f()sin="xdx = Dy, -
Replacmng by n:

—jf(x) sin Txdx
the other IC requires the time derivative of u(x,t).
g—j = nzlnLﬂsin mﬂx(E cos nLﬂt — D, sin nLﬂCtj
att =0,
> NTIC nr

ou
U (x.,0) = E, sin -5
Py (x,0) = > sin 7

n=1
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Separation of Variables-PDE

using IC,

a(x) = Z@E sin%x

Repeat the same procedure

mc L
X sm—xdx——E
Ig( ) T En
2 ni
= F, :—jg(x)sm—xdx
nic L
niw nic
u(x,t sin— x(D, cos—t+E SiIn——t¢
(x)=3 Dy cos— st

n=I
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45 o



Fourier series

A+ (4 cos(nx)+ B, sin(nx)).
n=1

A Fourier polynomial is an expression of the form

F (x)=a, + (a,cos(x) + b, sin(x)) +...+ (a, cos(nx) + b, sin(nx))
Which may be written as

F =a,+ Y (a, cos(kx) + b, sin(kx)).
k=1
The constants

F,(x).

dy,d; and bl-,i =1,...,n, are called the coefficients of

June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 !3’(3
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Fourier series

The Fourier polynomials are 2 n-periodic functions.

F =a,+ Zn: (a, cos(kx)+ b, sin(kx)).
k=1
1 ¢
a,=—/\| F, (x)dx,
" or J“” (%)
a, = % [* F,(x)cos(kx)dx,1 <k <n

b, = % [* F,(x)sin(kx)dx, 1<k <n
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Fourier series

Example
Find the Fourier series of the function f(X) =x, —T<x<T.

Since f(x) isodd then @ =0, forn>0. Forany p>1,

we have

b, = L r x sin(x)dx = 1 [_ X cos(rx) N Sln(;zx)}
T B

7T n n

=b = —gcos(mz) =3(—1)"+1.

n
n n

Hence f(x)~ Z(Sin(x) _sm(2x) + SIn(3x) j

2 3
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Fourier series

Find the Fourier series of the function with period 2L defined by Example
1 —L<t<0 1
JO=y, ¢
-—  O<t<L - .
. L ¢
2T T
T=2L, o=—=—
T L
Fourier series given by
dy
1) ~—2+ Za cos(nwt)+bnsin(nwt)
2 W
June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 lﬁ'&
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Fourier series

Coefficients found by evaluating

T/2
ap = iJ‘f (¢)cos(nwt)dt, b, = AJ‘
Fd_rn rJ_
Calculating
2 r/2 1 L nt
a, :—"‘f () cos(nawt)dt :—J- f(2) cos(—]dt
T _7/2 L 7 L
(20 I \
_L<J‘ cos(ﬂjdt+"- [l—ijcos[ﬂjdt
L 7 L 0 L L

June 16, 2003
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J
T/2

(¢)sin( nwt)dt

~N
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L
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Fourier series
| L
. Tt
a, = sin| —— |dt
nl L
0
- -L
1 L n it
= — ——COS
n L ni L
B 10
_l-cos(nz) 1-(-1)"

n’r? n’r?
o 2
“a, =0 if niseven, a, = > 2zfnzsoa’d,
n°rw
2
:>a2m209 Ao)m+1 = 2 9
Cm+D)x
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Fourier series

y T/2 1 (L
Calculate a, ag=—1\ f(t)dt = —If(t)dt
I'J_7/ LJ g
1 4 O L t 3
:—<Ildt+j 1 ——dt ;
L), 0o L
4 _ _L\
| 0 tz
=—<tl;, +|t——1 ¢
L ge 2L
\ - -0 J
ul r] 3
=—<sL+L——F=—
L 2L
CIO = 3/2
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Fourier series

Calculating b,

) (112 e nt
b,=—1f @)sm(nwt)dt= —J‘ JAO) sin[—jdt

(0 nt L t nt

J‘ sin[—jdt+ j (1——]Sin(—]dt

Js L 0 L L

( 0 L L
1 L nut t | L nt 1 L nt

= —<| ———cos| — —||1—— |—cos — — | ———cos| — |dt
L nr L . L | nx L 0 0 L nrx L

cos(nr)—1 1 IIL (nm‘
= + — COST 4

V

nw nr nual 0
D" 1| L | (—=1)" (—=1)"
= — sin = ~b, =
nw nal | nrx L 0 nrw nrw
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Fourier series

We now know that

2

n=1273,...
n+1)’7n°

ay, = Oa Ay =

3
2
(="

ni

3 N 2 Qn+Dm ) o' . (nm
4 4+;(zn+1)2nzcos( L j+ ni sm(Lj

dy =

h =

n

n=1,23,...

n=l
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Fourier transform

The continuous time Fourier transform of x(¢) is defined as

2(N) =[xt

and the inverse transform is defined as

x(t)=[" x(f)e*"df

A common notation is to define the Fourier transform in terms of L
as

X(iw)= j_°° x(H)e ' dt,

x(t) = — j X(iw)e'dw
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Fourier transform properties symmetry

() =] x(e *™di
2N =" (x, () +x, (D))(cos( 2aft) — isin( 2aft) .

The odd components of the integrand contribute zero to the integral.
Hence

() =" x ()cos(2aft)+i[ —x,(t)sin(2xft)dt,
() =x.(H)+ix;(f)

where 1) =] x.(t)cos(2rfi)dL,

2:(f) == x,(t)sinQ2rfi)dt.
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Odd and Even Functions

Even Odd
S =f(@) S ==f(-1)
Symmetric Anti-symmetric o .
-T2 -t o t Tn
Cosines Sines
Transform is real’ Transform is ‘

*for real-valued signals

A

imaginary /\/\J
-T2 -t 5

e Important property of even and odd
functions for any L,

L L

jf(t)dt - zjf(t)dt If fis even !

—L 0

L

[ rwa=o Iffis odd

- ZaTa
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Complex form of the Fourier series

Recall that
e ® =cosO+1sin0 — e .
e =cosO—1sin6
Complex conjugate
This gives
1 0 -0 : | e _D
cos 0 =— +e and  sinB=—\e" —e
2 21
Hence
1 Inx —Inx . _ 1 Inx — X
cosnyx=—\e " +e and sinnx=—1\e" " —e¢
21
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Complex form of the Fourier series

Now consider the Fourier series
o0

F(x)=ay+ E (a, cos nx + b, sin nx)

n=l1
o0

2 . iy b . .
:ao"‘ —H(GIHX+€ 1HX)+—H(€1HX—€ IHX)
2 21

n=1
00

= ay + E %(zzn —1b,, )emX "‘%(311 +1D,, )e_m

n=1

= f(x)=cy + ch (em + ]{ne_mX)

=1 C =§(ézn—1'bn), k, =c

*

11 11
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Complex form of the Fourier series

Remembering that

n i

1 1
4p :nJ‘f(X)COS nydy  and b, zj‘f(X)Sin nx dx
T
_n g
Hence [ = m )
1|1 I .
c,=—+— | £(x)cos nx dx —= | £(x)sinnx dx }
2T T
\TC —T —T J
| .
=— 01/ (X)(COS nx —1sin HX) dx
27
7.[7'5
= L a (X)f‘_deX
27 T
- 1 .
7T 111X
Similarly k, = o F(x )™ dx
7T
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Complex form of the Fourier series

and note that k&, =c_, . Then we have

= = 00 —00
f(x)=cq+ chem + e co + chem n chem
n=1 n=1 e —
Finally noting that 61'(0)X =1 we have
00 T
f(x)= chem with €, = % f(X)?_deX
N==0 —T

This the complex form of the Fourier series for f'(z). ¢, are the complex Fourier
coefficients.
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Complex form of the Fourier series

Example: Find the general solution to

v+ (x)zy = r([)

where © |

r(t)= sin\2n—1)t

2 Z (22— 1)2 ( )
n=lI

We have 00 |

V' oty = E 5 sin(2n—1)t

(2n-1)
n=lI

Consider the equation

" 2 1 .

V,+to 'y, = ?Szn nt (n = 1,3,5,...)

We find the general solution to this equation.
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Complex form of the Fourier series

The general solution of the homogeneous form is

v, =Acosot+ Bsinot

For a particular solution try v, =A,cosnt+ B, sinnt

Differentiating and substituting gives

(—112 +m2)AH cosnt+(—n2 +002)BH Sinnt =

(assuming ® %7 for n odd) we have

1
A, =0, B, = nz(mz _Hz)

Thus the particular solution is

1

H2 ((02 — 11

Yn =

2‘)Sll/l nt

June 16, 2003 Microwave Physics and Techniques
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Complex form of the Fourier series

o0

" 1 .
Since ¥+ o’y = 5 Sll’l(2H — l)t is linear, the general
Z (2n-1)

n=1

solution is a superposition

Vit V3t+tVs+..+Vy

Therefore
o0
. 1 :
y=Acosot+Bsinwt+ 5T 2"Sm(211—1)t.
(2n—-1P|0? - (2n-1)]
n=1
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Convolution Theorem

Let F, G, H denote the Fourier Transforms of signals f, g, and h
respectively.

g=Fh g=fh
implies implies
G=FH G = F*H

Convolution in one domain is multiplication in the other and vice versa.
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Convolution

S(f()*g(21)) = J(_[ f(—-7)g(r)dr)
= . f(t—r)g(r)dre et dy

o — OO v —

— . f(t—z')g(r)e 2ot d v dt

o — 00 —

S(f)yxg@) =] j f(t=1)g(r)e ™ dzd
— | ‘ f(u)g(r)e_iz”a’ ) d rdu

o — 0O o — 00

— [ [ f(u)e—i27m)ug(z_)e—i27m)f dZ'du

o — 00 J —

— [ f(u)e—ZZﬂ'a)uduJ‘ g(z_)e—ZZﬂwT dT

I(Sf(1)* g(1) = j f()e 2 tde [ g (t)e 2" dt
= I(S ()3 (g(1)
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Convolution

S(f (@) *g(@) =3(f(2)) 3(g(2))
3(f(Dg®) =I(f(1)*3(g(t))
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Green’s functions
Consider a general linear operator L

If on the closed interval 2 < xy </ we have a two point boundary problem for a
general linear differential equation of the form:

Ly = f(X),
Where the highest derivative in L is order n and with general homogeneous

boundary conditions at x=a and x=b on linear combinations of y and n-1 of its
derivatives:

A(y(a),y'(a),...,y(n_l)(a))T +B(y(b),y'(b),...,y(”_l)(b))T =0

Where A and B are n x n constant coefficient matrices, then knowing L, A and B,
we can form a solution of the form:

b
y(X) = f(S)g(X,S)a’S
d
June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 !gs"‘s
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Green’s functions

This is desirable as

* once g( x, s) is known, the solution is defined for all f including
- forms of f for which no simple explicit integrals can be written
- piecewise continuous forms of f

» numerical solution of the quadrature problem is more robust than direct
numerical solution of the original differential equation

*The solution will automatically satisfy all boundary conditions

*The solution is useful in experiments in which the system dynamics are well
characterized (e.g. mass spring damper).
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Green’s functions

We take g( x, s) to be the Green’s function for the linear differential operator L if it
satisfies the following conditions:

1. Lg(x, s)=d(x-5)

2. g (x, s) satisfies all boundary conditions given on x

3. g (x, s)is asolution of Lg=0on a <x <s and s<x <b

4. g(x,8),9(x,S),....9Mm3(x, s) are continuous for [a, b]

5. g™1)(x, s)is continuous for [a, b] except at x=s where it has a jump of PH_(IS)
June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 !!’”I'a
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Green’s functions

Consider:

d? d
L =F — 4+ P —+ P
(1) 3+ B+ B )
Then we have

d*g d
Py(x )dT+Pl( )a,i”’( x)g =8(x —s)
d2g+Pl(X)a’g+P0(X)g:5(X—S)
dx’  P(x)dy  Py(x) Py(x)

Now we integrate both sides with respect to x in a small neighborhood
enveloping x=s.

S+& d2 S+8P (X) dg S+8P (X) S+86(X _ S)
—dX + RIS Ay + —2> L odx = ———dx
L dx’ _ Pr(x)dx _ B(x) )

B . B(x)

S
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Green’s functions

S+¢& dzg })1(X) S+8dg PO (X) S+¢& ) 1 S+¢& )

j ek “g(@iadxd’”@(x) F g ) e

Integrating

dg|  dg|  P(s) e

4 £ 1\s s S+E
= I _ Zo\7) dx = Hy—
7 e L e ] TR

Since g is continuous, this reduces to

ds
dx

_ds
dx

1
S—& PZ(S)

This is consistent with the final point that the second highest derivative of g
suffers a jump at x=s.

S+E&
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Green’s functions

Next, we show that applying this definition of g( x, s) to our desired result lets
us recover the original differential equation, rendering g( x, s) to be
appropriately defined. This can be easily shown by direct substitution:

L, =L f(s)g(x,s)ds

d

an
L behaves as

ox” ’

= j‘f(S)Lg(X,S)dS

d

= j‘f(s)?}(x —s)ds

/(x)

June 16, 2003

via Leibritz’s Rule;

This analysis can be extended in a
straightforward manner to more arbitrary systems
with inhomogeneous boundary conditions using
matrix methods
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Green’s functions

Example: Find the Green’s function and the corresponding solution integral of
the differential equation

a’zy
wr

subject to boundary conditions
»(0)=0, »(1)=0

Verify the solution integral if f (x)=6x

Here d?
L — —2
dx

1) Break the problem up into two domains: a) x<s, b) x>s, 2) Solve Lg=0 in both
domains, four constraints arise, 3) Use boundary conditions for two constants, 4)
Use conditions at x-s: continuity of g and a jump of dg/dx , for the other two
constants.
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Green’s functions

Example:
a) x<a
2
d_f —0
dx
ds _ .
dx
g=Cix+C,
£(0)=0=4(0)+
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Green’s functions

Example:
b) x> s
2
d Cg 0
dx
ds .
dx
g = C3X+C4
g(1)=0=C5(1)
C4 — _C3

Continuity of g( x, s) when x=s:

ClS :C3(S—1)
Cl :C3S—_1
S

June 16, 2003

g(X,S)=C3S—_1X, x<s
S

g(X,S)=C3(X—1), xX>s
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Green’s functions

Example:

b) x> s

Jumping in dg/dx at x=s (note P,(x)=1):

g _dg
dx sy dyl_g
s—1
C3 - C3 — 1
S
C3 =5
g(X,S)z X(S — 1), xX<s
g(X,S)z S(X — 1), X > s
June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 !,ﬁ’%
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Green’s functions

Note some properties of g( x, s) which are common in such problems:

|t is broken into two domains

eIt is continuous in and through both domains

*Its n-1 (here n=2), so first) derivative is discontinuous at x=s

*It is symmetric in s and x across the two domains

*It is seen by inspection to satisfy both boundary conditions

The general solution in integral form can be written by breaking the

integral into two pieces as

y(X) = JU;(S)S(X — l)ds + J‘f(S)X(S — 1)0’5

0

X

y(X) = (X — I)J‘);(S)Sds + XI f(S)(S — l)dS

0

X

June 16, 2003 Microwave Physics and Techniques
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Green’s functions

Now evaluate the integral if f( x )=6x (thus f (s )=6s).

y(X) = (X — I)J‘)((6S)5d5 + Xj (65)(5 — l)a’s

X

= (X = I)J‘){652 )7’5 + XJ‘ (652 = 65}'5
=(x - 1)[253]3 + X[253 - 3S2L

=(x —1)(2X3 - 0)= X[(2 -3)- (2X3 - 3X2)]
S R B O B J e e Y
Y(X):X3 — X
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Green’s functions

Note the original differential equation and both boundary conditions are
automatically satisfied by the solution.

v =6y, v(0)=0,1(1)=0

2 1 \‘-/f] z
-1
_.3 -1.E
oK) =X X yix) ="~ x
in domain of interest 0 < x < 1 in expanded domain, -2 <x < 2
June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 !ga‘.l‘s
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Bessel equation

Bessel’s differential equation is as follows, with it being convenient to define ) = —v?2.

2 d’y dy (M2 2 )y:O

X —2+ X =V
dx dx
We find that (

)=
r(x)
q(x)

X
1
X
u

a( )ﬂ + b(X)dy C(X)y +Ay =0
dy? dx

Linear homogeneous second order D.E

+
oy () + oy () with general homogeneous b.c.

0
By(b)+PBay(b)=0
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Sturm-Liouville
Define the following functions:

X)=¢ex @ S
p(x) pU a(s)dJ

Ix :Lex @ S
W)= Ls)d

_elw) ol | 20) 4
Q(X)_Q(X) P I&S)d

With these definitions, the original equations are transformed to the type
known as a Sturm-Liouville equation:

d [p@f)d—Y}[q(x>+xr<x>]y<x>=o

E dx

-t

(X) dx dx
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Sturm-Liouville

Here the Sturm-Liouville linear operator Ls is

L= ) L glo)

r(X) dx dx

So we have [, y(X) — —7\J/

S

We thus require 0<x<oo, though in practice, it is more common to employ a
finite domain such as 0<x</. In the Sturm-Liouville form, we have

2
d{Xdy}+ uzX—V— y(X)z 0
dx

dx X
d d 2 2
x| —| x— [+p’x | p(x)= v r(x)
dx \ dx
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Sturm-Liouville

The Sturm-Liouville linear operator is

L,=x d(de + M2X
dx \  dx

In some other cases it is more convenient to take ) —= “2 in which
case we get

ply)=x
()= x
q(x)= —V;

and the Sturm-Liouville form and operator are:

H )y Hyoz):—my(x)
L-t{2(+2)-)
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Bessel equation

The general solution is

)/(X)Z Cljv (HX)+ Czyv (HX) if v is an integer
)/(X)ZCIJV(HX)-I— Cz_]_v(},LX) if v is not an integer

Where J (ux) and Y, (ux) are called the Bessel and Neumann functions of order
v. Often J (ux) is known as a Bessel function of the first kind and Y (ux) is known as a

Bessel function of the second kind. Both J, and Y are represented by infinite series
rather than finite series such as the series for Legendre polynomials.

The Bessel function of the first kind of order v, J ( 1x), is represented by

. (1o
Jy(ur)= G “vaz E/r?v“ +k } 1)

k=0
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Bessel equation

The Neumann function Y ( ux) has a complicated representation. The
representations for J,(xx) and Y, (ux) are

12X21 12X22 1 2X2H
JO(MX)I(A'Z/)zj +(4:;/)2j +...+( 4(:/)2 j
pan)= 2 S o )

I 22 1 L 5 5Y
= (4202 j (”3(4@/))

It can be shown using term by term differentiation that

d]v(uX): Jv+1(“X)_Jv—1(MX) de(“X)_ Yv+1(”X)_Yv—l(”X)
W =p
dx 2 dx 2

j—X[X“JV(ux)]=uXVJV_1(X) d [ Y ()= Y (1)
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Bessel equation L x)

"In:-(!-lgx::' JDI:!.IE}E:I .JD[:!_H X
Bessel functions J(1,X), Jo(4X), Jo(toX), Jo(psX)

'Tl-.' (x)

Bessel functions Jy(x), J;(x), J5(x), J5(x), J,4(x) Neumann functions Y(x), Y,(x), Y,(X), Y5(x), Y,(x)
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Bessel equation

The orthogonality condition for a domain z€[0,1], taken here for the case in which
the eigenvalue is , can be shown to be

1
_[X ]V(MI-X)]V(]JJ'X)OIX=O 1# ]

0

[ 2= L) i

0

Here we must choose p; such that J (n.)=0, which corresponds to a vanishing
of the function at the outer limit x =1. So the orthogonal Bessel function is

V25, ()
‘]\/—I—l (Mn )‘

¢, (x)
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Bessel equation

Hankel functions, also known as Bessel functions of the third kind are defined
H(x)= 7, (x)+ 17, (x)
HP(x)= 1, ()= ¥, (x)

The modified Bessel equation is

252 + X j—i—(xzﬂz )yzO

The solution of which are the modified Bessel functions. It is satisfied by the
modified Bessel functions. The modified Bessel functions of the first kind of order v is

o—v .
IV(X): 1 ]v(IX)
The modified Bessel functions of the second kind of order vis
K, ()= (i)
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Vectors and Tensors

3
u=ue) +u,er, +uzey = E ue; =u;e; =U; using Iinstein notation
=1

Here u,, u,, u, are three Cartesian components of u.

Two additional symbols:

0 g1+
6y' = 1 wi= Kronecker delta
G 1=]
1 o indices are in cyclical orden 1,2,3,1,2,. ..

Eik =\~ 1 ¢ udices are not in cyclical orden
0 4 two or mone cudices ane the same

Levi-Civita density

\
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Vectors and Tensors

Thei '
e identity € & o = 61]6

jn18](n + 811276]1161{] + 61)76]78](171

— 818 18 — 8 D 181 =818 1Sy

m< jm
relates the two.

We also have the following identities:

61'1' =3
61j = 61}'
6y611< = 6]7{

8{]](817171 = 6‘]]6]{171 o 8]))781{/

81']]{8!/]{ = 281]

€€k =0
€k = —€y
Cok = 7C ik
Cgk = ~C 4y

Cok = Chy = & ki
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Vectors and Tensors
Regarding index notation:

* repeated index indicates summation on that index
o non-repeated index is known as free index
** number of free indices give the order of the tensor

Sl UD, WD, Ui, Ui zeroth order tensor-scalar

* Uy UV second order tensor

U W, U

U U;Y; i7Vkm @ third order tensor

Ujipp UiV fourth order tensor

** indices cannot be repeated more than once
Wiy Uy Uyyin Vi are proper

* UDW, Wi UyD;; are Improper

% Cartesian components commute: U0, Wy =0 W Uy

+* Cartesian indices do not commute: Uiy ;ﬁuﬂﬂf
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Vectors and Tensors

Matrix representation: Tensors can be represented as matrices (but all matrices are

not tensors!):
(T, T, 133
1; =11y 1y 1y
131 13 133

A simple way to choose a vector q; associated with a plane of arbitrary orientation

is to form the inner product of the tensor 7}; and the unit normal associated with
the plane n;

q;=n/T; g=n-T
Here n.has components which are the direction cosines of the chosen direction.
Example: 7, = (0,1,0)

(T, Ty 1)
nT=0 1 05y By B3=5y By B u7y

I/ Hlﬂj +H2T2j +H3T§j

\L1 By b =(0)73, +(1)75, +(0)73,
= (131,19, 1»3)
June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 I_,qjg
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Vectors and Tensors

The transpose T,T of le is found by trading elements across the diagonal

TIJT:TJI

(T Ty T3
T =T, Tn Ty
L1313 133

A tensor is symmetricif it is equal to its transpose, i.e.

Ly =1}
A tensor is anti-symmetric if it is equal to the additive inverse of its transpose, i.e.
7: — _T/f

The inner product of a symmetric tensor S, and anti-symmetric tensor A, can be
shown to O:

June 16, 2003 Microwave Physigs and Techniques UCSB -June 2003 !J)”l‘a
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Vectors and Tensors

Example: Show this for a two-dimensional space. Take a general symmetric

tensor to be
a b
b e
Taking a general anti-symmetric tensor to be
0 d
A= _ d 0
So

S Ay =511411 + 512412 + 551401 + 59 As
= a(0)+ bd — bd + ¢(0)
=0
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Vectors and Tensors

An arbitrary tensor can be represented as the sum of a symmetric and anti-

symmetric tensor: | | | |
T = ETIj + ETIJ + 5TJ.I. _ETJ.].
1 1
=3 (1 +7; )+ 5 (r;-1;)

SO with

\ \— anti-symmetric
symmetric
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Vectors and Tensors

Example: Decompose the tensor given below into a combination of orthogonal
basis vector and dual vector.

1 1 =2

r,=| 3 2 -3

-4 1 1
| 1 =3 1 0 -1 1
=5\l +Ta)=| 2 2 1] g Tiy=5 T =1;)=| 1 0 -2
-3 -1 1 -1 2 0

First we get the dual vector:

d;=epd] i

dy =81 3 1} 11 = €1237 23] + 81327 ]30) = (1)(-2
dy =& 31} 1] = 2137113 + €231 [31) = (= 1))+ (1)(=
dy = &3 3 11 ] = €312 Tf12] + €301 7 f21] = (IN=1) + (= 1)1) = =2

N
_|_

I
[E—
—
(\®)
[l
|
N
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Vectors and Tensors
We now find the eigenvalues and eigenvectors for the symmetric part.

1-A 2 -3
2 2-A -—-1|=0
-3 -1 1-A

We get the characteristic polynomial,
N — 40 —9h+9=0
The eigenvalue and the associated normalized eigenvector for each root is
AW =536488  nll)=(-0.630537 —0.540358 0.557168)"

M) =_2.14644 n®) =(=0.740094 0.202303 —0.641353)"
A3 =0.781562 ¥ =(-0.233844 0.816754 0.527476)"

It is easy to verify that each eigenvector is orthogonal. When the coordinates
are transformed to be aligned with the principal axes, the magnitude of the
vector with each face is the eigenvalue; this vector points in the same direction

of the unit normal associated with the face.
UCSB -June 2003 m{g
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Green’s theorem

Let u=u,i+u,j be a vector field, C a closed curve, and D the region enclosed by C,
all in the x-y plane. Then

JooeJJ 15 pe

Example: Show that the Green’s theorem is valid if u=yi+2xyj, and C consists of
the straight line (0,0) to (1,0) to (1,1) to (0,0)

§ § d§ d,~+§

Where C,, C, , C,, are the straight lines (0,0) to (1,0), (1,0) to (1,1), and (1,1) to
(0,0), respectively.

Ci: v=0, dv=0, x:[01] u=0
C,: x=1 dx=0, y:[O,l], u=yi+2y
C;: x=y, di=dy, x: [1,0], Vo [1,0] 1= xiI+ 2X2j
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Green’s theorem
Thus

§u df_IOI+O] (a’XJ) j(y1+2)g) (a’yj) fX1+2X ]) (dXI-I—dX])

J‘Zy dy+fX+2X )j’X

0
o Tt TR
2 3 | 23 6

On the other hand
a 1 px 1
Uy jdX dy = (2y — l)a’y dx = (X2 — X)]'X
aX Oy 00 0
1

June 16, 2003 Microwave Physics and Techniques UCSB -June 2003 lﬂ%ﬁ
100 T

—




Gauss’s theorem

Let S be a closed surface, and V the region enclosed within it, then

u-ndS=QV-udV u:n; dS = ou,
Ox;

S V S v o

dV

Where dV an element of the volume and dS an element of the surface, and n (or n))
an outward unit normal to it. It extends to tensors of arbitrary order:

0T jx .
Ly 1;dS = —da 4
s v Ot
Gauss’s theorem can be thought of as an extension of the familiar one-dimensional
scalar result: b

&

@

) dx

Here the end points play the role of the surface integral and the integral on x plays
the role of the volume integral.

do(b)—(a) =
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Gauss’s theorem

Example: show that Gauss’s theorem is valid if u = xi + yj and S is the closed
surface which consists of a circular base and the hemisphere on unit radius with

center at the origin and z>0, that is x° +y° +2% = I

In spherical coordinates, defined by
x =rsin0cos
Vv =rsin0sind

xY=rcos0

The hemispherical surface is described by r = 1.

We split the surface integral into two parts

u-ndS=Vu-ndS+ Vu-ndS
S B H

Where B is the base and H is the curved surface of the hemisphere.
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Gauss’s theorem

ju -ndS =0 since n=-k and u .n=0on B. On H the unit normal is

b n=sin®cosopr +sinOsindy +( )k

u-n=sin”0cos’ 0) + sin® 0 sin” O = sin” 0

ju ndS = j j.sm 0(sin 0O dp) =2 J- (isin@—isinSdo@

2275 ——— ===
4 12) 3

On the other hand if we use Gauss’s theorem we find that
V-u=2

4 : . 2
IV udV =2 Since the volume of the hemisphere is 3 T

v
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Green’s identities

Applying Gauss’s theorem to vector u = ¢V, we get

jd)V‘P-ndSzIV-(d)V‘P)dV
S V

| anes= | alos)

From this we get Green’s first identity

J‘d)V\P ndS = I(¢V2W +Vo- w)dV

S V
2
0 s = |90t 4 S0y
Ox ; 0x ;0X 8X Ox ;
S V
June 16, 2003 Microwave Physics and Techniques
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Green’s identities

Interchanging ¢ and ¥ and subtracting, we get Green’s second identity.

j (VY —PVo)- 1 dS = j ((|>V2\P — Lva2<|>)a'v

S V

(R
Ox Ox, o 0x;0x; ~ Ox;0x

Stokes’ theorem

Let S be an open surface, and the curve C its boundary. Then

J‘(qu)-nd52§u-dr

C
ou
€1 Ik JS =My - dr
l]. aX ' 1 1
Ky J
C
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Eigenvalues and eigenvectors

If 7" is a linear operator, its eigenvalue problem consists of a nontrivial solution of

the equation
Te=M\e

where e is called an eigenvector and A is an eigenvalue.

1. The eigenvalues of an operator and its adjoint are complex conjugates
of each other.

2. The eigenvalues of a self-adjoint operator are real.

3. The eigenvectors of a self-adjoint operator corresponding to distinct
eigenvalues are orthogonal.

4. The eigenvectors of any self-adjoint operator on vectors of a finite-
dimensional vector space constitute a basis for the space.
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Eigenvalues and eigenvectors

Example: ForXEERZ,A: R —>5Rz, find the eigenvalues and eigenvectors of

2 1
A =
i)
Ax =Ax

(A=A1)x =0 1:((1) (1))

If we write

2 — 7& 1 X 1 O
1 2 — }\, X 2 O
June 16, 2003 Microwave Physlig.; and Techniques UCSB -June 2003 !{8’.’3

then



Eigenvalues and eigenvectors

By Cramer’s rule we could write

0 1
det
0 2—-A 0
X1 = =
! 2-% 1 2-0 1
det det
1 2—A\ 1 2—A
2—-A 0
det
1 0 0
X2: =

2-% 1)  (2-n 1
det det
1 2-A 1 2-A
An obvious, but uninteresting solution is the trivial solution x,=0, x,=0. Nontrivial
solutions of x, and x, can only be obtained only if

2-% 1
=0
1 2-2
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Eigenvalues and eigenvectors

Which gives the characteristic equation

(2 — 7»)2 —-1=0 solutions are A,=1 and A,=3.
2-1 1Y %) (1 1Y% (0
ror= I 2-1\x) U 1\x,) (0O
> X, +x,=0

If we choose x,=1 and r, = -1, the eigenvector corresponding to A=1 is

1
= 1
. 2—3 1 Xl —1 1 Xl 0
For A=3, the equations are = =
1 2—3 X2 1 —1 X2 O

> =X, +x,=0
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Laplace Transform

Let £(t) be a given function defined for all t > 0. If the integral

F(s)= I e " F (¢ )t

exists, it is called the Laplace transform of f(t) . We denote it by at 09

L(f)=F (s)= I e =" (¢ )t

The original function f(t) is called the inverse transform of I’ (s) ;we denote it by

LF)so fH)=L(F)
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Laplace Transform

Llaf (£)+ bg(t)} = ad{f (¢)}+ bdig(¢)}

Some useful transforms:

7(¢) £(£) £(¢)
1
1 _
S CoOS WL
, |
§2 Sint
- 2!
3 cosh ot
S
cn=Ls,.. G+ sinh ot
ot 1
c
S—Q
June 16, 2003 Microwave Physics and Techniques

111

UCSB -June 2003 m‘fs



Transform of derivatives

L(1")=s4(f)-1(0)
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Transform of an integral of a function

If /(%) is piecewise continuous

r )

Y j r(e | = L 2(r ()
s

\ 0

Hence if we write J(f(t)) = F(S) then

[t \
y, j F(ele = F1)

S

\ 0 y,

Taking the inverse Laplace transform gives
t

[’(F ES)) = j ().

0
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Shifting theorems and the step function

it £(£(¢))=F(s) | then z(e“’ff(z))z F(s—a)

Taking the inverse transform

II(F(S —a))=e*£(¢)

Example: Find ,Z(ea[ CcoS (0[)

We know

S

52+(02

L(cosmt)=

Using the above

4 (e COS ® t) = 5 5
(s—a) +w
June 16, 2003 Microwave Physics and Techniques
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Shifting on the t-axis

If /(1) has the transform F(s) and a>0 then the function

0 i t<a
f(t—a) i t>a

has the transform

e Fr (S)
Thus if we know F(s) is the transform of f (f) then we get the transform by
multiplying F(s) by e %
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Laplace transform

Example: Using Laplace transform solve
v"+ y=2cost, y(0)=2, »'(0)=0

Taking Laplace transform of the differential equation. Define Y (s) = £ (y).

522 )= 5 (0)- 3" )|+ 2()= 22 cos ¢)

= (52 +1)1(y)—25 = 522—S|—1 — l(y): 522i1 4 (S22:1)2

We have a complex and repeated complex factor.

[ 2s
! 5 j =2cost
s +1
, , ﬂ y(t):2cost+tsmt
S .
L ! =rsint
\ (S 2 + 1)2
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Laplace transform

Example: Solve

yi=n+3r; n0)=2, »(0)=3

et r(0)=1 14(0)=2

Define F' = £(y,), G=£(y,) and take the LAplace transform of both equations

L(y7)=4£(r))+3<4(r5)
—_ 52.4’(y1)—5y1(0)—Y1'(0)= 1(Y1)+34(Y2)
S (213622543

£(v)=42(,)-42lc" )

= 52.4()/2)—5}/2(0)_)/5(0): 4'4()/1)_3‘4(6{)

:>52G—4F:5+2—i

s—1
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Laplace transform

t
Where we have used »4’(6’ )=

1 1

1
s—1
— —|——, G: 1
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