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Current Lead Design
• What is a current lead and what are the

design challenges?
• Design goal - minimize cryogenic impact
• Configurations
• What do you expect?
• Designing conventional leads

– Conduction cooled
– Vapor cooled
– Forced flow cooled

• Designing HTS (hybrid) leads
– Cooling options
– Additional factors to consider
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Purpose, Design Challenge
• Purpose: Communicate electric

power from room temperature to
cryogenic coils, magnets,
transmission lines, or devices.

• Design challenge:
– Cryogenic heat load due to:

• Heat conduction

• Heat generation (I2R)

– Reducing conduction (reduce area,
increase length, reduce k) increases
heat generation

– Reducing heat generation
(increase area, decrease length,
reduce ρ) increases conduction

– Optimization required

AMI 75 kA
Conventional, helium
vapor-cooled leads

75 kA leads at
zero current
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Goal: Minimize Impact on Cryogenic System

• Open systems: reduce cryogen boil-off
• Benchmark: 1.1 W/kA-lead = 3 liter/hr-kA-pair

for conventional helium vapor cooled leads

• Closed cycle refrigerator: improve performance
• Reduce the required electrical power to refrigerate vapor

exiting warm end of leads:

 ≈ 7 kW electrical power for pair of 1 kA conventional leads

• Improve reliability by using a cryocooler to re-condense vapor
at 4.2 K

• Replacing conventional 5 kA leads with HTS versions
provides Fermilab Tevatron excess refrigeration to reduce
magnet temperature from 4.2 K to 3.5 K.
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Configurations

• Conventional
– Conduction cooled

– Vapor cooled

– Forced-flow cooled

• HTS - hybrid
– Conduction cooled

– Vapor cooled

– Forced-flow cooled
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What Do You Expect?

• The functional dependence of Q on Imax:
– For an optimized conduction cooled lead  _______________

– For an optimized vapor cooled lead _______________

• The functional dependence of the aspect ratio L/A on Imax:
– For an optimized conduction cooled lead ______________

– For an optimized vapor cooled lead _______________

• Compare the cold-end heat leak for a 1 kA vapor cooled lead:

Q (helium vapor cooled) ______  Q(nitrogen vapor cooled)

• Compare the aspect ratio for a 1 kA vapor cooled lead:

L/A (neon vapor cooled) __________  L/A (nitrogen vapor cooled)
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Conduction Cooled Lead: Derivations
• Energy balance on control volume:

 Qin - Qout + Qgen = 0

note that if dT/dx > 0, Qin > 0

• Change variables:  let
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Conduction Cooled Lead: Derivation (cont.)
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Conduction Cooled Lead: Sample Results
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Conduction Cooled Lead: Conclusions

• An ‘optimized’ lead is optimized for a single
(maximum) current

• Qc, min ~ I

• Qc, min is a function of Th, Tc, I, and (weakly) on
material choice

• JL = constant dependent only on Th, Tc, and mtl.
choice

•  L/A ~ 1 / I

Tc

Th



University of Wisconsin - Madison

Vapor Cooled Lead

• Energy balance at steady state is given by:

• Goal is to minimize

• Variety of solution methods: J.E.C. Williams (1963), Deines (1965),
Lock (1969), Dresner (1995) - similarity solution: (special units)

• Qmin/I (ordinary units) =

• Examples:
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Helium:  Th= 300 K, Tc= 4 K, sc= 1.79, Q/I = 1.12 W/kA

Nitrogen:  Th= 300 K, Tc= 77 K, sc= 0.855, Q/I = 25.4 W/kA
Neon:  Th= 300 K, Tc= 27 K, sc= 1.23, Q/I = 16.1 W/kA
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Vapor Cooled Lead (cont.)

• Optimum aspect ratio (similarity solution - special units)

using an integrated average value of k over the temperature range, and the
Lorentz constant Lo = 2.45 x 10-8 (WΩ/K2) gives (for a 1 kA lead)

• Helium VCL  (300 K - 4.2 K)

• Neon VCL  (300 K - 27 K)

• Nitrogen VCL  (300 K - 77 K)
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Vapor Cooled Lead - Conclusions

• Minimum heat leak:
– As with conduction cooled leads, Qmin ~ I

– Dependence of Qmin on coolant is dominated by (CL / Cp)

• Optimized aspect ratio:
– L/Aopt ~ 1/I smaller current → larger aspect ratio

– L/Aopt dependence on coolant:  colder range →  larger aspect ratio
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Forced Flow Cooled
• Behavior governed by same energy balance equation as vapor cooled

• E. Barzi, (Fermi-lab, 1998): numerical solution, with variable mass
flow rate, for lead designed for a maximum current of 5 kA
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HTS Current Leads

• Reduced cryogenic impact
– Heat generation significantly

reduced (eliminated) in HTS
segment.

– Heat conduction reduced

– Cold end heat load reduced
by factor of 3 - 10.

• Wide variety of cooling
options

• Additional design issues to
consider

upper
(conventional)
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intercept

lower
(HTS)
stage

300 K

20 - 90 K

4 K



University of Wisconsin - Madison

Cooling Options for HTS Leads

• Conduction cooled via cryocooler  - Chang & Van Sciver

– Minimize combined 1st and 2nd stage cooling power

– Optimized joint temperature ~ 90 K for Bi2223

Wref

I
=

1
FOML

TH

TL
− 1

 
  

 
  

1
JLhts

khts ⋅ dT
TL

TJ

∫ +
1

FOMJ

TH

TJ
− 1

 
  

 
  2 ρkcu ⋅dT

TJ

TH

∫ −
1

JLhts
khts ⋅ dT

TL

TJ

∫
 
  

 
  

Th

Tc

Tjoint

cryocooler

1st 
stage

2nd 
stage

Cu

HTS

Lead



University of Wisconsin - Madison

Cooling Options for HTS Leads
• Forced flow cooling - Fermilab, CERN, ITER

• Fermilab:  5 kA lead retrofit for Tevatron
–  helium vapor cooled HTS section
–  nitrogen gas cooled upper section
–  prototypes from ASC and IGC
–  heat loads: 101 W @ 80 K, 0.7 W @ 4 K

HTS sectionCu section

IGC prototype

ASC prototype - HTS section

• CERN:  13 kA, 6 kA, 0.6 kA for LHC
• ITER Toroidal Field Coils: 10kA, 20kA

–  conduction cooled HTS
–  helium gas cooled 50 K - 300 K
–  multiple vendors
–  < 1 g/s helium flow @ 20 K inlet

13kA prototype for CERN
Eurus/NHMFL 

10 kA prototype for ITER-FEAT 
FZK, CRPP-TF, Aventis/Nexans
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Cooling Options for HTS Leads

• Vapor cooling - AMI / MIT
– Hybrid lead designed so that HTS section operates above Ic

• 6 kA

• Stacked tapes (240 vs 480) of Bi-2223/Ag-4%Au

• Short (~ 0.4 cm / 28 cm) portion of HTS produces  joule
heating

• Additional joule heat removed by effluent helium vapor

– Improved characteristics as compared to fully
superconducting version

• Optimized versions:  Qc = 0.36 W vs. 0.71 W

• Quantity of Ag & Au reduced by a factor of ~2.

addl.

helium in
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Additional Considerations for HTS Leads

• Field dependence of Jc

• Fabrication process / materials

Stacked tapes of Bi2223 / Ag+4%Au
American Superconductor Corporation

Melt Textured YBCO
ATZ GmbH

MCP Bi2212
ACCEL/ART  GmbH
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Additional Considerations for HTS Leads
• Joint resistance ~ 0.1 µΩ

• Protection
– Localized hot spots, cracking

– Fault mode behavior:  loss of cooling, overcurrent
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