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Introduction

• An understanding of magnets is not possible without understanding 
some of the mathematics underpinning the theory of magnetic fields.  
The development starts from Maxwell’s equation for the three-
dimensional magnetic fields in the presence of steady currents both in 
vacuum and in permeable material.  

• For vacuum and in the absence of current sources, the magnetic fields 
satisfy Laplace’s equation.  

• In the presence of current sources (in vacuum and with permeable 
material) the magnetic fields satisfy Poisson’s equation.  Although 
three dimensional fields are introduced, most of the discussion is 
limited to two dimensional fields.  
– This restriction is not as limiting as one might imagine since it can be 

shown that the line integral of the three dimensional magnetic fields, when 
the domain of integration includes all regions where the fields are non-
zero, satisfy the two dimensional differential equations.  



Maxwell’s Steady State 

Magnet Equations
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Function of a Complex Variable

• The derivation of the expressions to show that a function 
of the complex variable, F where F is a function of the two 
dimensional complex space coordinate z=x+iy is 
developed from Maxwell’s equations.  This function 
satisfies Laplace’s and Poisson’s equations.  The 
development of these expressions are developed in 
sections 2.1 to 2.5 (pages 19 to 25 of the text).  

• This function is used to describe different two dimensional 
magnetic fields and their error terms.  

0
          

0
2

0

2

0










F

JF

B

JB  Poisson’s Equation

Laplace’s Equation



• The function can be expressed as F=A+iV where

– A, the vector potential is the real component

– V, the scalar potential V is the imaginary component

• An ideal pole contour can be computed using the scalar 
equipotential.  

• The field shape can be computed using the vector 
equipotential.

Vector and Scalar Potentials



• The two dimensional vector components of the magnetic 
field can be computed from the function.  

• Certain characteristics of the magnetic field can be 
determined by symmetry conditions using the function.  

• The two dimensional characterization of the magnetic field 
is a subset of the formulation for the three dimensional 

magnetic field.

– The integrated three dimensional field distribution can 
be completely characterized by the two dimensional 
complex function.  

• The concepts covered in this lecture will be useful later 
when discussing;

– Conformal mapping. 

– Field perturbations. 

– Magnetic Measurements.



Fundamental Relationships
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LaPlace’s Equation

• The function F describing the  two dimensional magnetic 
field in vacuum satisfies LaPlace’s equation.  The equation 
is satisfied in the absence of current sources and permeable 

material.

• One useful function (among 
many) which satisfies this 
equation is a function of the 

complex variable.

• This function is useful since it 
describes multipole magnets 

and their error terms.
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Homework #1

• Prove that F satisfies 

LaPlace’s Equation.  

• Hint
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Vector and Scalar Potentials
• In this section, we describe a subset of functions which describe a 

class of magnets.  These magnets are important in the synchrotron 
business since they supply the particle optics to steer, focus and 
correct the particle beam orbit.  This subset of functions are the 
functions which are components of the Taylor’s series of the complex 
space coordinate z=x+iy.  

• Although specific functions are used to describe ideal fields, the full 
Taylor series expansion is used to characterize the desired field as 
well as the unavoidable error fields.  

• In general,  F=Czn describes a class of two dimensional magnetic 
fields in air and in the absence of permeable material where n is any 
integer and C can be a real or complex constant. 

• A=Vector Potential

• V=Scalar Potential. 

iVAF 

FA Re

FV Im



• Much can be learned about the magnet 

characteristics from the Function of the 

complex variable.

– The pole shape can be determined.

– Flux Lines can be mapped.



Quadrupole Example

• C is a real constant

• n=Field index 

=2 for quadrupoles

• A=Vector Potential      

=Real (F)

• V=Scalar Potential

=Imaginary (F)
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• Vector Equipotential 

Hyperbolic curve with 

asymptotes at +- 45 deg.  

• Scalar Equipotential 
Hyperbolic curve with 
asymptotes along the x 
and y axes.  
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Quadrupole Equipotentials



Homework #2

• Find the expressions for the poles and the 

flux lines for a dipole.  (Hint n=1)

• Find the expressions for the poles and the 

flux lines for a skew quadrupole.  

(Hint C=iC, imaginary number)



Sextupole Example

• For the sextupole case, the function of a 
complex variable is written in polar form.

– This case is presented to illustrate that both 
polar and Cartesian coordinates can be used in 
the computation.    
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Sextupole Equipotentials



Multipole Magnet

Nomenclature

• The dipole has two poles and field index 
n=1.  

• The quadrupole has four poles and field 
index n=2. 

• The sextupole has six poles and field index 
n=3.  

• In general, the N-pole magnet has N poles 
and field index n=N/2.



Even Number of Poles

• Rotational periodicity does not allow odd number 

of poles.  Suppose we consider a magnet with an 

odd number of poles.

• One example is a magnet with three poles spaced 

at 120 degrees.  The first pole is positive, the 

second is negative, the third is positive and we 

return to the first pole which would need to be 

negative to maintain the periodicity but is positive.



Characterization of Error Fields

• Since              Satisfies LaPlace’s equation,                   

must  also satisfy LaPlace’s equation.

• Fields of specific magnet types are 

characterized by the function                             

where the first term is the “fundamental” 
and the remainder of the terms represent 
the “error” fields.  
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Allowed Multipole Errors

• The error multipoles can be divided among 
allowed or systematic and random errors.   

• The systematic errors are those inherent in the 
design and subject to symmetry and polarity
constraints.  

• Symmetry constraints require the errors to repeat 
and change polarities at angles spaced at /N, 
where N is the index of the fundamental field.  



• In the figure, the poles are not symmetrical 

about their respective centerlines.  This is to 

illustrate rotational symmetry of the N poles.



• Requiring the function to repeat and change signs 

according to the symmetry requirements:  

• Using the “polar” form of the function of 

the complex variable:  
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• In order to have alternating signs for the poles, the 
following two conditions must be satisfied.  

• Rewriting;    
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• Therefore;
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• Thus, the error multipoles allowed by 

rotational symmetry are;

– For the dipole, N=1, the allowed error 

multipoles are n=3, 5, 7, 9, 11, 13, 15, …

– For the quadrupole, N=2, the allowed error 

multipoles are n=6, 10, 14, 18, 22, …

– For the sextupole, N=3, the allowed error 

multipoles are n=9, 15, 21, 27, 33, 39, …





Magnetic Field from the Function of 

the Complex Variable

• The field is a vector with both magnitude 

and direction.  The vector can be described 

in complex notation since the x and y 

components can be described as the real and 

imaginary components of the complex 

function.  Therefore, the field can be 

described as a function of F(z).



• The complex conjugate of the field is given by; 
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Homework #3

From the function; 2
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Sextupole Example

a quadratically varying field. 2

3

*

3 3 zCiB 

 







2cos3

2sin3
             

2sin2cos333

2

3

2

3

2

3

22

3

2

3

*

3

zCB

zCB

izCiezCizCiiBBB

x

x

i

yx








 







3sin3

sin2coscos2sin3

sincos

2

3

2

3

zC

zC

BBB yxr











The Curl Equation

• We postulate that the B field can be completely 

determined by the vector potential A.  
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• This is consistent with the vector equation; 

Where in two dimensions;
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• In general, the three 

dimensional field 

vector can be written 

as the vector equation; 

• The Vector Potential A is a vector quantity.  
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The Divergence Equation

• We postulate that the B field can be 

completely determined by the Scalar

potential V.  
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• This is consistent with; 

• In general, the 3D field 

vector can be written as the 

vector equation, 
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The Scalar Potential V is a scalar quantity.   



Cauchy-Riemann

• Using one or the other potentials;  

which are the Cauchy-Riemann conditions and can only 

be satisfied for

and not for 
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Complex Extrapolation

• Using the concept of the magnetic potentials, the ideal 
pole contour can be determined for a desired field.  

• Gradient Magnet Example

– The desired gradient magnet field requires a field at a 
point and a linear gradient.  

– Given:

• A central field and gradient.

• The magnet half gap, h, at the magnet axis. 

– What is the ideal pole contour?  
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Other Functions
• In this section, we discussed two dimensional “multipole” magnets, those with 

rotational symmetric fields. This is a small subset of all of the possible magnetic field 
distributions.  

• Wigglers and undulators are magnets which are finding increasing use in light source 
synchrotrons.  The two dimensional characterization of the magnetic fields from these 
magnets is longitudinally (rather than rotationally) periodic and represents another 
subset of possible magnetic fields.  

• The characterization of the fields from these magnetic structures is well documented in 
the published literature and can be characterized by an analytic function.  Although the 
full characterization of these fields has not been included in the text and should be 
covered in a separate course on magnetic structures, it should be emphasized that the 
analytic expression describing these fields can also be characterized by a father simple 
analytic function.  
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Lecture 3

• Lecture 3 will cover conformal mapping and 

application of the tools to extend knowledge about 

the simple dipole magnet to the more complex 

quadrupole magnet.  

• Section 2.1 should be reviewed and Chapter 3 

should be read.  

• It would also be helpful to read a part of Chapter 6 

(section 6.6) on applications of conformal 

mapping to POISSON calculations.  


