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Conformal Mapping



Introduction

 This section introduces conformal mapping.
— The means of ensuring dipole field quality is reviewed.

— Conformal mapping is used to extend the techniques of ensuring
dipole field quality to quadrupole field quality.

— Conformal mapping can be used to analyze and/or optimize the
quadrupole or sextupole pole contours in by using methods applied
to dipole magnets.

« Conformal mapping maps one magnet geometry into
another.

 This tool can be used to extend knowledge regarding one
magnet geometry into another magnet geometry.



Mapping a Quadrupole into a Dipole

» The quadrupole pole can be described by a

hyperbola; Xy = 2V_C = A Constant

Where V is the scalar potential and C is the coefficient of the
function, F, of a complex variable.

The expression for the _h?
hyperbola can be rewritten; Xy= 2

: 2 .\
We introduce the WeUtiv=l = (x+iv)

complex function; h h



2 2
Rewriting; w=u+iv=-—_Y +iw
h
2 2
u=Rew=2>_Y
h
2XYy - h?
h d 2
X —y* .
Therefore;: W= hy +1h

the equation of a dipole since the imaginary (vertical)
component Is a constant, h.



Mapping a Dipole into a Quadrupole

* In order to map the dipole into the
quadrupole, we use the polar forms of the
functions; w=|we” and z=|ze"

2
Since w= 2 was used to convert the quadrupole into the

h
dipole, z?=hw= h\vv\e””.

i .
z=,/hwie 2 =|zfg' therefore; z|=/hw and ng

x =|z|cos & = ,/hjw| cosg

Finally; p
y =|z|sin@ = \/h|w] sinE



Quadrupole Field Quality

 The figure shows the pole contour of a quadrupole
and its required good field region.

The pole cutoff, the point at
which the unoptimized or
optimized quadrupole hyperbolic /
pole 1s truncated, also determines Good /
the potential field quality for the :;dm
two dimensional unsaturated

quadrupole magnet.




e The location of this pole cutoff has design implications.
It affects the saturation characteristics of the magnet
since the 1ron at the edge of the quadrupole pole 1s the
first part of the pole area to exhibit saturation effects as
magnet excitation is increased. Also, 1t determines the

widt]
widt]

h of the gap between adjacent poles and thus the
n of the coil that can be 1nstalled (for a two piece

quad

rupo

le). The field quality advantages of a two

piece quadrupole over a four piece quadrupole will be
discussed in a later section.



H Magnet Field Quality Review

* The relation between the field quality and "pole
overhang'" are summarized by stmple equations for a
window frame dipole magnet with fields below
saturation.

.

a RSN Field Region




The required pole overhang beyond the good field region
are given by the following equations.

a "pole overhang"

h half gap
Xonoptiniag = (E) - 03622 _0.90
h unoptimizel B

X = (3) _ 014128 025
optimized B

optimized ~— h



* The relations can be presented graphically.

Dipole Reld Quality
as a Function of Pole Overhang
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 Given; (u,, V,) satisfying dipole uniformity
requirements.

 FiInd; (X, Y,) satisfying the same requirements
for quadrupoles.
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For the Dipole;

A, optimize = —h{o.36 n25 0.90}
B

—h|unoptimized factor ]

a

optimized ~

= —h{0.14 In A—BB + 0.25} — —h[optimized factor |

Therefore:

I N
u =%+a=%—h[factor] and v, =h

C



’
Substituting a unitless (normalized) good field region, p, =

h
. X =|z|cos& = \/h|w] cosﬁ
and using the conformal 2
mapping expressions, ¢

y =|z/sin 6 = \/h|w|sin 5

and the half angle
formulae, 4 _\/l—cos¢




and substituting,

w| _Julevi H ve |
2h  2h  \l2n 2h
2 2 2
N hYy L1
_\/4£h2 [factor]j +(2hj _2\/(h2 [factor]] +1
XC 1 2 2 1 2
— E\/(po —[factor]) +1+§(p0 — [ factor])

= 2 ~lractorlf 13 (o2 ~[factor)




Substituting the appropriate factors for the unoptimized and
optimized dipole cases, we get finally for the quadrupoles;

c unoptlmzed . \/

ycuno imiz 1
pt ed :\/ \/,0

coptlmzed .

G
J

yc optlmzed

;J p 036In—+090D +1+—[,00 oselnA—BB+090

— 036|nA—B+090 +l—1 P - 036|nA—B+090

2 2 I B |
2

1 p 014InA—B+025 s14+1 po - 014InA—B+025

i B | 2 i B i

2

1, AB 1 AB

— —10.14Ih—+0.25|| +1—-= —10.14In—+0.25
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* The equations are graphed 1n a variety of formats
to summarize the information available in the
expressions. The expressions are graphed for both
the optimized and unoptimized pole to 1llustrate
the advantages of pole edge shaping in order to
enhance the field. The quality at various good
field radi1 are computed since the beam typically
occupies only a fraction of the aperture due to
restrictions of the beam pipe.



Quadrupole Held Quality
as a Function of Pole Cutoff
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Quadrupole Half Throat Height
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2
C

Since the field for the quadrupole B« X2+Y

varies with the radius; B N h

pole
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The Septum Quadrupole

« PEPII is a positron electron collider. In order to maximize
the the number of collisions and interactions, the two beams
must be tightly focused as close to the interaction region as
possible. At these close locations where the final focus
quadrupoles are located, the two crossing beams are very
close to each other. Therefore, for the septum quadrupoles,
It IS not possible to take advantage of the potential field
quality improvements provided by a generous pole
overhang. It is necessary to design a quadrupole by using
knowledge acquired about the performance of a good field
quality dipole. This dipole is the window frame magnet.



The conformal map of the window frame dipole aperture
and the centers of the separate conductors is illustrated.

The conductor shape does not have to be mapped since the
current acts as a point source at the conductor center.
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Other Uses for Conformal Maps

* Programs such as POISSON compute the
two dimensional distribution of the vector
potential. The vector potential function 1s
computed using a relaxation method (for
POISSON) or a modified matrix inversion
(for PANDIRA) among neighboring mesh
points defined by the magnet geometry.



» The magnetic field distribution 1s then
computed from the derivative of the vector
potential.

H"=H,-iH, =iF'(z) = H, S H, =R
N X

*For an 1deal dipole field (/ =constant and/or
H =constant) the vector potential function 1s a linear
function of z.
 For a quadrupole field, the vector potential
function 1s a quadratic function of z.
*The vector potential for a sextupole 1s a cubic
function of z.



* When computing the field distribution, it 1s necessary to
compute the derivative by interpolating the distribution of
the vector potential function among several mesh points.
The precision of the field calculations depends on the
mesh density and the continuity of the interpolated values
of the vector potential.

 Since the dipole function 1s simple (a linear distribution),
the potential precision of field calculations 1s much higher
than for quadrupole (quadratic) or sextupole (cubic) fields.
(An accurate estimate of the derivatives for a linear
distribution of a potential function can be obtained from
fewer values from “neighboring” mesh points than for a
quadratic or cubic distribution.)



Therefore, when high precision computations for
magnetic field distribution have been required, a
conformal transformation 1s often employed to convert
the quadrupole and/or sextupole geometry to a dipole

configuration.
z° z°
W = T for aquadrupole, w= oz for a sextupole.



However, there is a problem in the mapping of the
quadrupole and sextupole to the dipole space.

>

V4

Typically, T"HX >1

2
Therefore, (ﬂj =(Ej >>1 and
h dipole h

quadrupole

3

(Wj — (Ej >>1  Inthe mapped space.
h dipole h

sextupole



* When mapping from the quadrupole or sextupole
geometries to the dipole space, the POISSON
computation 1s initially made in the original
geometry and a vector potential map 1s obtained at

some reference radius which includes the pole
contour.

Vector
Potential Edit

Vector




The vector potential values

are then mapped into the Aw,.¢)=alr.,0)
dipole (w) space and used
as boundary values for the re
problem. Wret =1 71
quadrupole
Szfepri?dvecmr ¢ — 2‘9quadrupole
W _ [rr3ef j
ref 2
4 h sextupole
b
{‘ 0 ¢ = 3‘gsextupole

ref



Quadrupole/Sextupole Pole Optimization

 |tis far easier to visualize the required shape of
pole edge bumps on a dipole rather than the
bumps on a quadrupole or sextupole pole.

 [tis also easier to evaluate the uniformity of a
constant field for a dipole rather than the
uniformity of the linear or quadratic field

distribution for a quadrupole or sextupole.

» Therefore, the pole contour is optimized in the
dipole space and mapped back into the quadrupole
or sextupole space.



* The process of pole optimization is similar to
that of analysis in the dipole space.

— Choose a quadrupole pole width which will provide
the required field uniformity at the required pole
radius.

» The pole cutoff (x_,y,) for the quadrupole can be
obtained from the graphs developed earlier using the
dipole pole arguments.

» The sextupole cutoff can be computed by conformal
mapping the pole overhang from the dipole space using

z =3h*w



 Select the theoretical ideal pole contour.

Xy = % for the quadrupole.

3x°y—y® =h® for the sextupole.

mSelect a practical coil geometry.

Expressions for the required excitation and practical current
densities will be developed in a later lecture.

mSelect a yoke geometry that will not saturate.

mRun POISSON (or other 2D code) in the quadrupole or
sextupole space.

mFrom the solution, edit the vector potential values at a fixed
reference radius.



» Map the vector potentials, the good field
region and the pole contour.

 Design the pole bump such that the field in
the mapped good field region satisfies the

required uniformity.

Mapped Vectar
Potential

Mapped Pole

7Z
W=F for the gquadrupale
3

W= % for the sextupole

Mapped Good Field Reg‘ion'

r= %Q for the quadrupole :1 > L Optimized
3 n Pale| Bump
r= -& for the sexiupole + _ ]

A ' ' -




« Map the optimized dipole pole contour back
Into the quadrupole (or sextupole) space.

» Reanalyze using POISSON (or other 2D
code).



Closure

« The function, z", Is important since it represents different
field shapes. Moreover, by simple mathematics, this function
can be manipulated by taking a root or by taking it to a higher
power. The mathematics of manipulation allows for the
mapping of one magnet type to another --- extending the
knowledge of one magnet type to another magnet type.

« One can make a significant design effort optimizing one
simple magnet type (the dipole) to the optimization of a much
more difficult magnet type (the quadrupole and sextupole).

« The tools available in POISSON can be exploited to verify
that the performance of the simple dipole can be reproduced
In a higher order field.



Lecture 4

 Lecture 4 will cover the POISSON
computer code. This session will be
followed by a computer laboratory session
where the lessons learned in the lecture can

be applied.

» Chapter 6 should be read prior to the
lecture.



