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Introduction

• This section introduces conformal mapping.

– The means of ensuring dipole field quality is reviewed.  

– Conformal mapping is used to extend the techniques of ensuring 
dipole field quality to quadrupole field quality.  

– Conformal mapping can be used to analyze and/or optimize the 
quadrupole or sextupole pole contours in by using methods applied 
to dipole magnets.

• Conformal mapping maps one magnet geometry into 
another.  

• This tool can be used to extend knowledge regarding one
magnet geometry into another magnet geometry.



Mapping a Quadrupole into a Dipole

• The quadrupole pole can be described by a

hyperbola; 
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Where V is the scalar potential and C is the coefficient of the 

function, F, of a complex variable.

The expression for the 

hyperbola can be rewritten; 2

2h
xy 

We introduce the 

complex function; 

 
h

ivx

h

z
ivuw

22 




h

yx
wu

22

Re




h
h

xy
wv 

2
Im

h

xy
i

h

yx
ivuw

222




Rewriting; 

since
2

2h
xy 

ih
h

yx
w 




22

Therefore; 

the equation of a dipole since the imaginary (vertical) 

component is a constant, h.  



Mapping a Dipole into a Quadrupole

• In order to map the dipole into the 

quadrupole, we use the polar forms of the

functions;  ieww  iezz and
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Quadrupole Field Quality

• The figure shows the pole contour of a quadrupole 
and its required good field region.  

The pole cutoff, the point at 

which the unoptimized or 

optimized quadrupole hyperbolic 

pole is truncated, also determines 

the potential field quality for the 

two dimensional unsaturated 

quadrupole magnet.  



• The location of this pole cutoff has design implications.  

It affects the saturation characteristics of the magnet 

since the iron at the edge of the quadrupole pole is the 

first part of the pole area to exhibit saturation effects as 

magnet excitation is increased.  Also, it determines the 

width of the gap between adjacent poles and thus the 

width of the coil that can be installed (for a two piece 

quadrupole).  The field quality advantages of a two 

piece quadrupole over a four piece quadrupole will be 

discussed in a later section.



H Magnet Field Quality Review

• The relation between the field quality and "pole 
overhang" are summarized by simple equations for a 
window frame dipole magnet with fields below 
saturation. 
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The required pole overhang beyond the good field region

are given by the following equations.  



• The relations can be presented graphically.
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• Given; (uc, vc) satisfying dipole uniformity 

requirements.

• Find; (xc, yc) satisfying the same requirements 

for quadrupoles.
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For the Dipole;

Therefore; 
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Substituting the appropriate factors for the unoptimized and 

optimized dipole cases, we get finally for the quadrupoles; 



• The equations are graphed in a variety of formats 

to summarize the information available in the 

expressions. The expressions are graphed for both 

the optimized and unoptimized pole to illustrate 

the advantages of pole edge shaping in order to 

enhance the field.  The quality at various good 

field radii are computed since the beam typically 

occupies only a fraction of the aperture due to 

restrictions of the beam pipe.



2.01.51.01.0

10 -6

10 -5

10 -4

10 -3

10 -2

  Quadrupole Field Quality 

as a Function of Pole Cutoff

 B
B

xc

h

Optimized pole

Unoptimized pole

0 = 0.9

0 = 0.9

0 = 0.8

0 = 0.8

0 = 0.7

0 = 0.7

0 = 0.6

0 = 0.6



10 -210 -310 -410 -510 -6
0.2

0.3

0.4

0.5

Quadrupole Half Throat Height

 B
B

yc

h

0 = 0.9

0 = 0.9

0 = 0.8

0 = 0.8

0 = 0.7

0 = 0.7

0 = 0.6

0 = 0.6

U
n
o
p
ti

m
iz

ed
O

p
ti

m
iz

ed



10 -210 -310 -410 -510 -6
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Ratio of Peak Field to Poletip Field

 B
B

Bcutoff

Bpole

0 = 0.9

0 = 0.9

0 = 0.8

0 = 0.8

0 = 0.7

0 = 0.7

0 = 0.6

0 = 0.6 Unoptimized

Optimized

h

yx

B

B
cc

pole

cutoff
22


Since the field for the quadrupole

varies with the radius; 



The Septum Quadrupole

• PEPII is a positron electron collider. In order to maximize 

the the number of collisions and interactions, the two beams 

must be tightly focused as close to the interaction region as 

possible.  At these close locations where the final focus 

quadrupoles are located, the two crossing beams are very 

close to each other.  Therefore, for the septum quadrupoles, 

it is not possible to take advantage of the potential field 

quality improvements provided by a generous pole 

overhang.  It is necessary to design a quadrupole by using 

knowledge acquired about the performance of a good field 

quality dipole.  This dipole is the window frame magnet.  



• The conformal map of the window frame dipole aperture 

and the centers of the separate conductors is illustrated.  

• The conductor shape does not have to be mapped since the 

current acts as a point source at the conductor center.



Other Uses for Conformal Maps

• Programs such as POISSON compute the 

two dimensional distribution of the vector 

potential.  The vector potential function is 

computed using a relaxation method (for 

POISSON) or a modified matrix inversion 

(for PANDIRA) among neighboring mesh 

points defined by the magnet geometry.



• The magnetic field distribution is then 
computed from the derivative of the vector 
potential.
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•For an ideal dipole field (Hy=constant and/or 

Hx=constant) the vector potential function is a linear 

function of z. 

• For a quadrupole field, the vector potential

function is a quadratic function of z. 

•The vector potential for a sextupole is a cubic 

function of z. 



• When computing the field distribution, it is necessary to  
compute the derivative by interpolating the distribution of 
the vector potential function among several mesh points.  
The precision of the field calculations depends on the 
mesh density and the continuity of the interpolated values 
of the vector potential.  

• Since the dipole function is simple (a linear distribution), 
the potential precision of field calculations is much higher 
than for quadrupole (quadratic) or sextupole (cubic) fields.  
(An accurate estimate of the derivatives for a linear 
distribution of a potential function can be obtained from 
fewer values from “neighboring” mesh points than for a 
quadratic or cubic distribution.)



Therefore, when high precision computations for 

magnetic field distribution have been required, a 

conformal transformation is often employed to convert 

the quadrupole and/or sextupole geometry to a dipole 

configuration.
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in the mapped space.

However, there is a problem in the mapping of the

quadrupole and sextupole to the dipole space.  



• When mapping from the quadrupole or sextupole 
geometries to the dipole space, the POISSON 
computation is initially made in the original 
geometry and a vector potential map is obtained at 
some reference radius which includes the pole 
contour.



The vector potential values 

are then mapped into the 

dipole (w) space and used 

as boundary values for the 

problem.  
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Quadrupole/Sextupole Pole Optimization

• It is far easier to visualize the required shape of 
pole edge bumps on a dipole rather than the 
bumps on a quadrupole or sextupole pole.  

• It is also easier to evaluate the uniformity of a 
constant field for a dipole rather than the 
uniformity of the linear or quadratic field 

distribution for a quadrupole or sextupole.

• Therefore, the pole contour is optimized in the 
dipole space and mapped back into the quadrupole 
or sextupole space.



• The process of pole optimization is similar to 

that of analysis in the dipole space.

– Choose a quadrupole pole width which will provide 

the required field uniformity at the required pole 

radius.  

• The pole cutoff                 for the quadrupole can be 

obtained from the graphs developed earlier using the 

dipole pole arguments.  

• The sextupole cutoff can be computed by conformal 

mapping the pole overhang from the dipole space using                 
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• Select the theoretical ideal pole contour.

2
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for the quadrupole.  

for the sextupole.  

Select a practical coil geometry.

Expressions for the required excitation and practical current 

densities will be developed in a later lecture.  

Select a yoke geometry that will not saturate.

Run POISSON (or other 2D code) in the quadrupole or 

sextupole space.  

From the solution, edit the vector potential values at a fixed 

reference radius.



• Map the vector potentials, the good field 
region and the pole contour.

• Design the pole bump such that the field in 
the mapped good field region satisfies the 

required uniformity.



• Map the optimized dipole pole contour back 

into the quadrupole (or sextupole) space.

• Reanalyze using POISSON (or other 2D 

code).



Closure

• The function, zn, is important since it represents different 
field shapes.  Moreover, by simple mathematics, this function 
can be manipulated by taking a root or by taking it to a higher 
power.  The mathematics of manipulation allows for the 
mapping of one magnet type to another --- extending the 
knowledge of one magnet type to another magnet type.  

• One can make a significant design effort optimizing one 
simple magnet type (the dipole) to the optimization of a much 
more difficult magnet type (the quadrupole and sextupole).  

• The tools available in POISSON can be exploited to verify 
that the performance of the simple dipole can be reproduced 
in a higher order field.  



Lecture 4

• Lecture 4 will cover the POISSON 

computer code.  This session will be 

followed by a computer laboratory session 

where the lessons learned in the lecture can 

be applied.  

• Chapter 6 should be read prior to the 

lecture.  


