
Lecture 4

POISSON

A Two-Dimensional 

Magnetostatic Solver



POISSON

• POISSON/SUPERFISH are a family of electric and 
electromagnetic codes, written originally by Klaus Halbach 
and Ron Holsinger.  

– Information regarding the code family and means of downloading 
the codes can be obtained by contacting James H. Billen 
<jbillen@lanl.gov>

• It is a public access code (it’s free), maintained under 
contract with DOE by Los Alamos National Accelerator 
Laboratory (LANL) personnel.  

• The LANL interest is mainly in the RF field, so the bulk of 
the development and maintenance of this family of codes is 
in the SUPERFISH area.  Thus, maintenance and 
development of the magnetostatic capabilities is limited by 
funding and time.  



Magnetostatic Elements

• Four main code components are of interest to those involved in magnet 
design.  

– Automesh.EXE

• Automesh is a automatic mesh generator.  It takes input information written in 
a text file and generates a mesh of points written in several matrices used by 
POISSON or PANDIRA to solve the distribution of magnetic fields in a two 
dimensional magnet cross section.  

– poisson.EXE

• POISSON uses the Automesh output and solves for the vector potential 
distribution in the two dimensional geometry by successive approximation 
using the relaxation method.  It computes the field distribution from the vector 
potential distribution.  

– pandira.EXE

• PANDIRA solves for the vector potential by diagonalizing the matrix.  

– Wfsplot.EXE

• WFSPLOT is a graphics routine which can present either the lattice geometry 
from Automesh or the Vector equi-potentials resulting from POISSON or 
PANDIRA solutions.  



Program Flow 

Chart

• The structure of the information flow for 
the  POISSON/Pandira program group is 
shown in the diagram.  

• A text file is written which includes all 
the information required to define the 
problem.  

– If WFSPlot is run alt this point, the 
Tape35 file is used to graphically present 
the geometry information.  

• AutoMesh is run using this file.  
Automesh overwrites the current Tape35 
file.

• Poisson/Pandira is run using the current 
Tape35 file and overwrites the Tape35 
file writeen by AutoMesh.

– WFSPlot is run using the current Tape35 
file and creates a graphical output of the 
calculated results.  

• Outpoi is a text file which is overwritten 
each time POISSON or Pandira is run.  

• This file contains the information used 
in the program, including the BH curve 
called in the .txt file.  

• Parts of this file (the results of the edit) 
can be copied and used to present the 
results of the calculations.  



Text File

Sample Problem  

Simple Dipole

!First two lines in the text file are the title and descriptors for the problem.  

!These titles will be carried in subsequent output files.  

!mat=1 means air region, =2 means iron region using the internal iron BH properties.  

!kprob=0 means POISSON problem

!mode=0 means finite permeability using one of the tables

!xmin, xmax, ymin, ymax are the physical horizontal and vertical limits of the problem.

! xreg1 and kreg1 are the x value for the mesh with kreg1 nodes. kmax is the no. of k 

!nodes.  More regions defined by xreg2, kreg2, etc. are possible.  

! yreg1 and lreg1 are the y value for the mesh with lreg1 nodes. lmax is the no. of l nodes.

! icylin=0 is Cartesian Coordinates, =1 is cylindrical coordinates.

! xminf, xmaxf, yminf, ymaxf are the physical limits for the data output limits.  ktop and 

!ltop are the number of data output points over the limits.  Example, xminf=-30, 

!xmaxf=30, ktop=13 means that the output edit data will have 13 entries from -30 to +30 

!mm at 5 mm. increments. ienergy=1 means that the stored energy will be computed.  

! nbsup, nrslo, nbsrt, nbslf are boundary condition for UPper, LOwer, RTside, LFside.

! =0 and 1 mean Dirichlet and Neumann Boundaries, respectively.   

! conv=1 is the default for cm. =.1 is for mm, =2.54 is for inches.

! The following are the CONS for the harmonic analysis.

! ktype=124.  First integer =1 dipole, 2 quadrupole.

!Second integer =2 means multipole inteval.  Third integer =1 means midplane 

!symmetry, =0 skew terms.  

! nptc=30 number of arc points, nterm=number of terms, rint=35 mm interpolation radius, 

!rnorm=32 mm normalization radius.  

!angle=180 maximum angle, anglz=0 starting point for interpolation. 

A portion of a text 

file written for a 

dipole geometry is 

shown.  The first 

two lines of the 

file are title lines 

which are carried 

throughout the 

calculations.  All 

the lines shown are 

preceded by a ! 

sign, which 

indicates that these 

are comments.  



• This text file defines a dipole geometry.  

$reg mat=1, kprob=0, mode=0,conv=.1,

xmin=0,xmax=150., 

kmax=50,

ymin=0, ymax=100.,

lmax=50, 

icylin=0, 

xminf=0., xmaxf=25,ktop=11

yminf=0.0, ymaxf=10,ltop=5 

ktype=121,nptc=31 nterm=14,rint=20, rnorm=25, angle=90, anglz=0

ienergy=1,

nbsup=0, nbslo=1, nbsrt=0, nbslf=0$

The first section defines the problem constraints.  Note 

that $reg is used before and $ after this input section.  

Air Region Poisson/Pandira

Problem
Finite Permeability

Using Table
0.1 is for mm.

1 is for cm. 

2.54 is for inch
x and y limits

k and l limits No cylindrical

symmetry

icylin=1 is cylindrical 

symmetry problem



• The last part of the first section describes the edit constraints.  

$reg mat=1, kprob=0, mode=0,conv=.1,

xmin=0,xmax=150., 

kmax=50,

ymin=0, ymax=100.,

lmax=50, 

icylin=0, 

xminf=0., xmaxf=25,ktop=11

yminf=0.0, ymaxf=10,ltop=5 

ktype=121,nptc=31 nterm=14,rint=20, rnorm=25, angle=90, anglz=0

ienergy=1,

nbsup=0, nbslo=1, nbsrt=0, nbslf=0$

This section describes the limits 

of the output edit.  The x limits 

are 0 to 25 mm, the y limits are 

0 to 10 mm.  11 points are used 

for x (dx=2.5 mm) and 5 points 

are used for y (dx=2.0mm).  

This line describes the edit for the Fourier analysis 

of the beam.  Ktype=121 means (1=dipole, 

2=multipole interval, 1= midplane Neumann 

boundary, third digit 0= midplane Dirichlet 

boundary.  nptc=31 means number of points on the 

circle, rint=20 means interpolation on 20 mm radius 

arc, rnorm=25 means multipole normalization at 25 

mm, angle=90 and anglez=0 means the edit points 

are from 0 to 90 degrees.  nterm=14 means the 

maximum number of multipole terms.  

ienergy=1 means 

calculate the 

stored energy in 

joules/meter.  

ienergy=0 means 

don’t calculate the 

stored energy.  



• The last line in the first section describes the boundary 
conditions.  nbsup, nbslo, nbsrt and nbslf means the 
boundary condition at the upper, lower, right hand, and 
left hand boundaries.  = 0 means Dirichlet (flux parallel) 
and =1 means Neumann (flux perpendicular) boundaries.  

$reg mat=1, kprob=0, mode=0,conv=.1,

xmin=0,xmax=150., 

kmax=50,

ymin=0, ymax=100.,

lmax=50, 

icylin=0, 

xminf=0., xmaxf=25,ktop=11

yminf=0.0, ymaxf=10,ltop=5 

ktype=121,nptc=31 nterm=14,rint=20, rnorm=25, angle=90, anglz=0

ienergy=1,

nbsup=0, nbslo=1, nbsrt=0, nbslf=0$



• Geometry Definition.  Note that all regions must close, that 
is the first and last coordinates are equal.  Each line must 
begin and end with $ or & sign.  

!first region is air (mat=1), defines 

the problem limits.  

$po x=0, y=0$

$po x=150, y=0$

$po x=150, y=100$

$po x=0, y=100$

$po x=0, y=0$

!Coil

$reg mat=1 cur=-20000$

$po x=55, y=25 $

$po x=75, y=25 $

$po x=75, y=45 $

$po x=55, y=45 $

$po x=55, y=25$

!Iron Yoke

$reg mat=2$

$po x=0, y=25 $

$po x=40, y=25$

$po x=50, y=50$

$po x=80, y=50$

$po x=80, y=0 $

$po x=120, y=0 $

$po x=120, y=80$

$po x=0, y=80$

$po x=0, y=25$

Problem rectangular boundary. It uses the 

material definition given in the first section, 

mat=1 means air or vacuum.  

Coil region is defined by its boundary, material 

specification mat=1 and the current value in 

Amps.  Negative currents in the right hand coil 

gives positive flux on the horizontal centerline.  

Coil regions can be single points and/or lines.   

The iron yoke area uses mat=2, which uses the 

BH curve for a “generic” iron whose magnetic 

properties approximate the behavior of 1010 steel.  



Lattice Text Writing Techniques

• I find it easier to develop the geometry lattice using the Excel.

$po x=

, y=

boundary $

xb yb

0 0 $po x=0, y=0$

150 0 $po x=150, y=0$

150 100 $po x=150, y=100$

0 100 $po x=0, y=100$

0 0 $po x=0, y=0$

Coil

xc yc

55 25 $po x=55, y=25$

75 25 $po x=75, y=25$

75 45 $po x=75, y=45$

55 45 $po x=55, y=45$

55 25 $po x=55, y=25$

Yoke

xy yy

0 25 $po x=0, y=25$

40 25 $po x=40, y=25$

50 50 $po x=50, y=50$

80 50 $po x=80, y=50$

80 0 $po x=80, y=0$

120 0 $po x=120, y=0$

120 80 $po x=120, y=80$

0 80 $po x=0, y=80$

0 25 $po x=0, y=25$

-50

0

50

100

150

-50 0 50 100 150 200

yy

yc

yb

=CONCATENATE(C$1,A5,C$2,B5,C$3)

Copy and Paste



Symmetric Quadrupole
• $reg mat=1, kprob=0, mode=0,conv=.1

• xmin=0, xreg1=50.0, xreg2=235, xmax=301.65, 

• kreg1=60, kreg2=200, kmax=220,

• ymin=0.0, yreg1=30.0, yreg2=108, ymax=301.65,

• lreg1=40, lreg2=120, lmax=220, 

• icylin=0, 

• xminf=0, xmaxf=230, 

• yminf=0, ymaxf=0, 

• ktype=4, 

• nbsup=0, nbslo=1, nbsrt=0, nbslf=1, 

• ktype=241,nptc=46 nterm=14,rint=30, rnorm=32.5, angle=45, anglz=0$

• !first region is air (mat=1) 

• !problem type is poisson

• $po x=0.0, y=0.0$

• $po x=301.65, y=0.0$

• $po x=301.65, y=301.65$

• $po x=0.0, y=0.0$

• $reg mat=1 cur=10700$

• $po x=128.175, y=55.152$

• $po x=205.74, y=99.264$

• $po x=230.190, y=56.655$

• $po x=152.625, y=12.543$

• $po x=140.4, y=33.848$

• $po x=128.175, y=55.152$

Spear3 Quadrupole                                                                                                         
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• $reg mat=1 cur=135$

• $po x=117.380, y=48.379$

• $po x=128.175, y=55.152$

• $po x=140.4, y=33.848$

• $po x=129.605, y=27.075$

• $po x=117.380, y=48.379$

•$reg mat=2$

•$po x=24.75, y=24.75$

•$po x=25.124,y=24.382$

•$po x=26.482,y=23.129$

•$po x=29.063,y=21.075$

•$po x=31.731,y=19.296$

•$po x=34.429,y=17.798$

•$po x=37.159,y=16.679$

•$po x=38.959,y=16.097$

•$po x=39.768,y=15.647$

•$po x=40.494,y=15.006$

•$po x=41.171,y=14.227$

•$po x=41.905,y=13.615$

•$po x=42.7,y=13.215$

•$po x=43.544,y=13.022$

•$po x=45.902,y=13.0$

•$po x=46.436,y=13.093$

•$po x=46.683, y=13.206$

•$po x=119.38, y=53.379$

•$po x=130.175, y=60.152$

•$po x=207.740, y=104.264$

•$po x=232.19, y=61.655$

•$po x=232.19, y=0.0$

•$po x=301.65, y=0.0$

•$po x=301.65, y=301.65$

•$po x=24.75, y=24.75$

•$reg ibound=0$

•$po x=0., y=0.0$

•$po x=24.75, y=24.75$

•$po x=301.65, y=301.65$

A line boundary region 

defines the Neumann

boundary condition 

along a diagnoal line.  



Using POISSON in Conformally 

Mapped Geometries

• In addition to analyzing the performance of a high 
performance geometry, POISSON can be used analyze the 
performance of mapped geometry.  However, the mapping 
algorithm is highly nonlinear.  Therefore, when a dipole 
geometry (which is well understood) is mapped into a 
quadrupole geometry, the entire quadrupole area is highly 
distorted and the boundaries of the extremities of the 
geometry can be very large compared to the area where the 
fields need to be resolved.  

• Because of this limitation, means of modeling a smaller 
boundary in the quadrupole space needs to be understood.  



Conformal Mapping

• The figure shows the 
simple dipole (the baseline 
case)  described in the 
earlier section of this 
lecture.

• The output edit instruction 
requested a vector 
potential edit on a circular 
boundary which enclosed 
the required good region 
and a portion of the pole.

$po x=

, y=

boundary $

xb yb

0 0 $po x=0, y=0$

150 0 $po x=150, y=0$

150 100 $po x=150, y=100$

0 100 $po x=0, y=100$

0 0 $po x=0, y=0$

Coil

xc yc

55 25 $po x=55, y=25$

75 25 $po x=75, y=25$

75 45 $po x=75, y=45$

55 45 $po x=55, y=45$

55 25 $po x=55, y=25$

Yoke

xy yy

0 25 $po x=0, y=25$

40 25 $po x=40, y=25$

50 50 $po x=50, y=50$

80 50 $po x=80, y=50$

80 0 $po x=80, y=0$

120 0 $po x=120, y=0$

120 80 $po x=120, y=80$

0 80 $po x=0, y=80$

0 25 $po x=0, y=25$

-50

0

50

100

150

-50 0 50 100 150 200

yy

yc

yb

=CONCATENATE(C$1,A5,C$2,B5,C$3)

Copy and Paste

Mapping the dipole (w-space) 

into quadrupole (z-space) maps 

half the angle and generates a 

mesh where the corner of the 

dipole maps into a very large 

multiple of the magnet gap, h. 



Review from Lecture #3

Mapping a Dipole into a Quadrupole

• In order to map the dipole into the quadrupole, 

we use the polar forms of the functions;
ieww  iezz and

Since                 was used to convert the quadrupole into the

dipole,                                .iewhhwz 2

h

z
w

2






i
i

ezewhz  2 whz 
2


 therefore; and

Finally; 
2

coscos


 whzx 

2
sinsin


 whzy 
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Harmonic analysis

Interpolated points on an arc of radius = 58.95

centered at (XORG,YORG) = (0.0,0.0)

K,L is nearest mesh point to physical coordinates X,Y.

n Angle X Y K L Avector

1 0 58.95 0 40 1 -5.01E+04

2 5 58.7257 5.1378 40 5 -5.03E+04

3 10 58.0544 10.2366 40 8 -5.09E+04

4 15 56.9413 15.2574 39 12 -5.18E+04

5 20 55.3949 20.1621 38 16 -5.30E+04

6 25 53.4268 24.9133 36 19 -5.43E+04

7 30 51.0522 29.475 35 22 -5.54E+04

8 35 48.289 33.8123 33 26 -5.65E+04

9 40 45.1583 37.8923 31 29 -5.77E+04

10 45 41.6839 41.6839 29 32 -5.26E+04

11 50 37.8923 45.1583 26 34 -4.69E+04

12 55 33.8123 48.289 23 37 -4.07E+04

13 60 29.475 51.0522 21 38 -3.44E+04

14 65 24.9133 53.4268 18 40 -2.82E+04

15 70 20.1621 55.3949 15 42 -2.21E+04

16 75 15.2574 56.9413 11 43 -1.63E+04

17 80 10.2366 58.0544 8 44 -1.07E+04

18 85 5.1378 58.7257 5 44 -5.31E+03

19 90 0 58.95 1 44 -3.83E-11

The upper figure is the POISSON solution 

for the full quadrupole.  The text file is from 

the POISSON edit where the values of the 

vector potential is evaluated on a fixed radius 

enclosing the pole tip and the required good 

field region.  The lower figure is the 

POISSON calculation using a mesh in which 

the vector potential values are used for the 

boundary condition.



Spear3 Quadrupole  - Conformal Map                                                                                        
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•A is the quadrupole POISSON flux 

plot from the dipole mesh using the 

vector potential boundary.

•B is an “optimized” dipole contour.

•C is the POISSON flux plot from the 

mapped “optimized pole contour.
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The final Poisson flux plot describes 

the field distribution using the actual 

quadrupole yoke and coil geometry.



• Although there are many commercial software packages 
which perform two and three dimensional magnet 
calculations, POISSON uses the “language” of magnetics 
and allows one to compute the vector potential around a 
boundary and performs the harmonic analysis which are 
used to track the beam in existing lattice codes.  

• Most of the accelerator community uses this tool, thus it is 
the software package of choice for me. 

• The individual student should investigate other packages 
which may be more user friendly.  In particular, the meshing 
package for POISSON is rather weak and often does not 
have the flexibility nor is robust enough to generate difficult 
detailed meshes easily.   



Homework

• This lecture will be followed by a computer laboratory session.  
– If you haven’t already done so, please read thoroughly and carefully 

chapter 6 of the text.  Pay special attention to the section which presents 
the writing of the text file.  An example writing the coordinates using a 
spreadsheet is illustrated by Fig. 4 on page 142 of the text.  

• Familiarize yourself with Problem 6.1 on page 169 of the text.  

• The examples of the conformally mapped geometry, although 
important, may take too much time to understand and to execute 
properly during this week.  The student is encouraged to study the 
examples carefully and to run these, or similar cases, when he/she 
returns home.  

• If you have the opportunity to do so, begin making the calculations of 
the parameters and the quadrupole poletip geometry and compute the 
current required to produce the required excitation in problem 6.1. 
– An expression needed to calculate this excitation is eq. 5.12 in chapter 5, 

the chapter covered in lecture 6.   

– We will work together writing the text file and running POISSON during 
the next session.  



Lecture 5

• Chapter 4 of the text covers the material which will be presented in 
lecture 5, Perturbations.  

• Although much effort can be invested to define pole geometry which 
will result in a uniform magnet, errors in fabrication, assembly or design 
assymetry can introduce error fields which can compromise the magnet 
performance.  

• This chapter and lecture will cover the multipole field errors introduced 
in an otherwise perfectly designed magnet.  
– In many ways, these errors are much more important and damaging than 

those limited by the design.  

– This is because these errors are lower order multipoles which vary as a 
lower power of the radius and thus damp less quickly than the “allowed” 
multipoles.  

• Understanding the next lecture will be enhanced if chapter 4 is read 
before the next lecture.  


