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• The subject of Perturbations is covered in chapter 4 

of the text and is one of the more important subjects 

covered in this course.  This is because the 

performance of an accelerator lattice is dominated 

by the quality and reproducibility of the magnets 

fabricated/installed in the lattice.  

• Perturbations are characterized by the multipole 

content of a magnet.  A good magnet is 

characterized by the harmonic content of its 

integrated field.  

– A perfect dipole is characterized by F1= C1 z

– A perfect quadrupole is characterized by F2= C2 z
2

– A perfect sextupole is characterized by F3= C3



• Tables of coefficients and expressions are presented which 
make it possible to compute the magnitude of error multipoles 
resulting from fabrication, assembly and pole excitation errors 
associated with magnet manufacture.  

– Pole excitation errors can result from shorted coil turns, 
errors in winding the coils or other sources.  

• The other sources of pole excitation errors are poles 
which differ in length from other poles.

• Pole excitation errors can also be introduced 
intentionally in order to produce trim fields, those fields 
which do not normally exist in a particular yoke 
geometry.

• Physics requirements normally specify the maximum 
amplitude of the various multipole errors.  As a magnet 
designer, these multipole errors must be translated into 
fabrication/assembly tolerances.  Examples of tolerance 
calculations are given in Section 4.3.5 of the text.



Effect of Mechanical Fabrication 

Errors on Error Multipole Content

• In the previous lecture, we showed that the 
field distribution in a magnet can be 
characterized by a function of the complex 
variable, z.  In particular; 
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Random Multipole Errors 

Introduced by Pole Excitation

and Pole Placement Errors

• Random multipole errors are introduced if the poles are 

improperly excited or assembly errors which displace 

poles are introduced.  If one can identify these errors, one 

can predict the multipole content of the magnet.  The 

means for calculating these errors are summarized in two 

papers published by Klaus Halbach.  The first paper 

describes the derivation of the relationships, the second 

computes and tabulates the coefficients used to calculate 

the multipole errors from the perturbations derived in the 

first paper.



• A portion of a table from UCRL-18916 by Halbach and Yourd is

reproduced below. This table is for quadrupoles, N=2.

n

N

Cn j 
i

1 1.99 • 10-1 -4.25 • 10-1 7.46 • 10-2 1.76 • 10-1

2 2.50 • 10-1 -5.16 • 10-1 2.14 • 10-1 5.00 • 10-1

3 1.57 • 10-1 -2.88 • 10-1 2.88 • 10-1 6.60 • 10-1

4 0 6.76 • 10-2 2.31 • 10-1 5.00 • 10-1

5 -2.05 • 10-2 1.08 • 10-1 1.08 • 10-1 1.91 • 10-1

6 0 -4.45 • 10-2 2.87 • 10-2 0

7 1.61 • 10-2 -1.04 • 10-2 1.04 • 10-2 -3.06 • 10-2

8 0 1.28 • 10-2 1.56 • 10-2 0

9 -1.90 • 10-3 1.25 • 10-2 1.25 • 10-2 7.53 • 10-3

10 0 6.37 • 10-3 5.81 • 10-3 0
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• This table of coefficients is used to estimate the error multipole due to 

excitation, radial, azimuthal and rotation errors in the location of a pole 

on the horizontal axis.  The imaginary term in the denominator for the 

excitation (j) and radial (rd) terms indicate that errors in these 

quantities introduce skew terms.  The tabulated coefficients are 

computed for poles centered on the positive horizontal axis.  For the 

normal multipole magnet (one whose axis is rotated away from the 

horizontal axis), the expression for calculating the error multipole 

normalized to the desired fundamental, evaluated at the pole radius, is 

given by;
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Example Calculation

• Suppose we construct a 35 mm radius quadrupole whose 
first pole is radially offset by 1 mm.  What is the effect on 

the n=3 (sextupole) multipole error.
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Meaning of the Result

• The calculation means that the n=3 (sextupole) error 

multipole normalized to the fundamental field at the pole 

radius (35 mm) is approximately 0.8% due to the radial 

displacement of the first pole at /4 by 1 mm.  

• Carrying the calculation further to determine the phases;  
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• Further simplification;
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This means that the real component of the sextupole error 

is out of phase with the fundamental field and that a 

positive skew component of the sextupole field also exists.  



Evaluation at the Required 

Good Field Radius

• We recall that the field for an n multipole varies as zn-1.  
Therefore if the good field radius is r0=30 mm,  the n=3
normalized multipole error can be evaluated at this radius.  





















 
































 














 

35

30

35

30
35

30

35@2

33

2

35@2

33

30@2

33

mmy

xy

mmy

xy

mmy

xy

H

iHH

H

iHH

H

iHH



Other Errors

• The coefficient table can be used for other errors.   
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The Error Multipole Spectrum
• In general, the table of coefficients includes entries for all the 

multipole indices.  Therefore, although the sample calculation was 

performed only for the sextupole error field component, all the 

multipole errors due to the radial misalignment of the first pole exist.  

• These errors include the error in the fundamental (n=2) as well as the 

n=1 dipole field.

Real and Skew Components of Error Multipole due to 1 mm 

Radial Displacement of Pole #3 for a Quadrupole
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Error Amplitudes as a Function of Radius

Error Multipole Spectrum due to 1 mm Radial Displacement 

of Pole #1 for a Quadrupole
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Lesson
• The lesson from this sample calculation is not the detailed 

calculation of the multipole error, but the estimate of the 
mechanical assembly tolerances which must be met in 
order to achieve a required field quality.  

• In general, the coefficient is <0.5.  Therefore in order to 
achieve a field error at the pole radius of 5 parts in 10000 
(a typical multipole error tolerance), the following 

tolerance illustrated in the calculation must be maintained.




                           
*

*

PoleRadius
tCoefficien

H

H

N

n

inchmm

mm

tCoefficien

PoleRadius

H

H

requiredN

n

0014.0035.0

5.0

35
105 4

*

*



 

A very small error.



Another Lesson

The Magnet Center
• We note that all the multipole errors are introduced by 

mechanical assembly errors.  In particular, we look in detail 
at the dipole error term introduced by assembly errors.  

• For the pure quadrupole field, the expression for the complex 
function is;   2

2 zCzF 

If the magnet center is 

shifted by an amount z, 

the expression becomes; 
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The first term in this expression is the quadrupole field 

(a linear function of z).  The second term is a constant 

and, therefore, is the dipole field.  



• Rewriting the expression as the sum of two fields;  
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Evaluating the quadrupole field at the pole radius, r0;  

Equating the real and imaginary 

parts of the expression, the 

magnetic center shift can be 

evaluated from the dipole field.   



• These relationships may be more easily visualized with a figure
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Effect of a Pole Excitation Error on the 

Magnetic Center

• One of the many issues faced by the NLC project is the 

stability of the magnetic center of adjustable hybrid 

permanent magnet quadrupoles. 

• A sample calculation is made to compute the required pole 

excitation precision.
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• Suppose we have a 1% error on the excitation of a single pole 

in the first quadrant.  
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The Four Piece Magnet Yoke

• The ideal assembly satisfies the 
rotational symmetry 
requirements so that the only 
error multipoles are allowed 
multipoles, n=6, 10, 14 ...  
However, each segment can be 
assembled with errors with three 
kinematic motions, x, y and 
(rotation).  Thus, combining the 
possible errors of the three 
segments with respect to the 
datum segment, the core 
assembly can be assembled with 
errors with 3x3x3=27 degrees of 
freedom.
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The Two Piece Magnet Yoke

• This assembly has the 

advantage that the two 

core halves can be 

assembled kinematically 

with only three degrees of 

freedom for assembly 

errors.  Thus, assembly 

errors are more easily 

measured and controlled. 
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Coefficients for a Two-Piece Quadrupole

1 0 0 2.49 • 10-1

2 3.02 • 10-1 -7.30 • 10-1 0

3 0 0 -9.33 • 10-1

4 -9.56 • 10-2 -3.27 • 10-1 0

5 0 0 -2.70 • 10-1

6 -4.06 • 10-2 -6.29 • 10-2 0

7 0 0 -4.33 • 10-2

8 1.81 • 10-2 2.20 • 10-2 0

9 0 0 1.06 • 10-2

10 8.22 • 10-3 9.01 • 10-3 0

11 0 0 5.12 • 10-3

12 -3.77 • 10-3 -3.94 • 10-3 0

13 0 0 -1.31 • 10-3

14 -1.74 • 10-3 -1.78 • 10-3 0

15 0 0 -9.41 • 10-4

16 8.14 • 10-4 8.23 • 10-4 0
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Two Piece Quadrupole Error Computations

• The computations of the multipole error fields due to 
assembly errors of the two piece quadrupole are similar but 
simpler than the computations for the four piece quadrupole.  
In the expressions below, h is the pole radius.

• The error terms are evaluated at the pole radius.  
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• Referring to the table;  

– The shear motion of the top half of the magnet 

with respect to the bottom introduces skew 

even multipole errors.  

– The vertical motion introduces real even 

multipole errors.

– The rotational motion introduces real odd 

multipole errors.  



h=pole radius

x
x 

x

h

h=pole radius

y
y 

y

h

h=pole radius



2



Experiments

• Computations using the coefficients for the two piece 
magnet have been compared to experiments where the 
upper half of a magnet was intentionally displaced with 
respect to its nominal position. 
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Vertical Perturbation

A = .015"

B = .005"

C = .011"

Av e. = .0103"

D = .015"

E = .007"

F = .009"

Av e. = .0103"

Lef t Side Right Side

A = .018"

B = .012"

C = .021"

Av e. = .0170"

D = .018"

E = .013"

F = .019"

Av e. = .0167"

Lef t Side Right Side

5 mil shims

Normal Assembly

Vertical Perturbation
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• Vertical and Rotational Motion

A = .021"

B = .012"

C = .018"

Av e. = .0170"

D = .015"

E = .006"

F = .013"
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Lef t Side Right Side

5 mil shims

14.5 inch

161514131211109876543

-10

-5

0

5

dyrot meas  rl
dyrot calc rl
dyrot meas  im

for Vertical and Rotational Perturbation

Multipole Number

N
o

r
m

a
li

z
e
d

 M
u

lt
ip

o
le

  
 (

p
a

rt
s

 i
n

 1
0

0
0
0

)



• Shear and Vertical Motion

A = .016"

B = .009"

C = .015"

Av e. = .0133"

D = .016"

E = .010"

F = .016"

Av e. = .0140"

Lef t Side Right Side

5 mil shims

161514131211109876543

-10

-5

0

5

dydx meas rl
dydx c alc rl

for Vertical and Shear Perturbation

Multipole Number

N
o

r
m

a
li

z
e
d

 R
e
a

l 
C

o
m

p
o

n
e
n

t 
o

f 
th

e

  
 M

u
lt

ip
o

le
 E

r
ro

r 
(p

a
rt

s
 i

n
 1

0
0

0
0

)



• Skew term due to vertical and shear perturbations.  
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Other Applications

• In crowded lattices, there is often insufficient room to 
place all the desired magnetic elements.  An occasional 
solution to this problem, employed both at ALS and at 
APS, is to provide trim windings on a sextupole yoke in 
order to obtain horizontal and vertical steering fields and 
skew quadrupole fields without introducing a sextupole 
field.  (The controls sextupole fields want to be 
independent of the horizontal and vertical steering and the 
skew quadrupole controls.)  The design of such trim 
windings and the evaluation of the field quality which 
results when employing these techniques exploit Klaus 
Halbach’s perturbation coefficients. 



• The table of coefficients for N=3 

(sextupole) for pole excitation error, 

, is reproduced from Klaus 

Halbach’s perturbation paper.  

1 9.79E-02

2 1.56E-01

3 1.67E-01

4 1.33E-01

5 7.09E-02

6

7 -1.34E-02

8 -1.07E-02

9

10 9.13E-03

11 9.72E-03
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13 -1.01E-03

14 -1.18E-03
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16 1.63E-03

17 2.07E-03
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19 -1.12E-04

20 -1.70E-04
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Vertical Steering Trim

(Horizontal Flux Lines)

• Vertical steering trim (horizontal flux lines) is achieved in a 
sextupole yoke by exciting the four horizontal poles.  

Pole 1 
 = 30°

Pole 2 
 = 90°

Pole 3 
 = 150°

Pole 4 
 = 210°

Pole 5 
 = 270°

Pole 6 
 = 330°

+NI

+NI

-NI

-NI

Field 
Direction



• The formulation of the expressions follows:
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• Equating real and imaginary terms for 

the horizontal steering trim;  
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• Tabulating the results;  

n
1 9.79E-02 0 3.4641 0.3391

2 1.56E-01 0 0 0

3 1.67E-01 0 0 0

4 1.33E-01 0 0 0

5 7.09E-02 0 -3.4641 -0.2456

6 0 0 0 0

7 -1.34E-02 0 -3.4641 0.0464

8 -1.07E-02 0 0 0

9 0 0 0 0

10 9.13E-03 0 0 0

11 9.72E-03 0 3.4641 0.0337

12 0 0 0 0

13 -1.01E-03 0 3.4641 -0.0035

14 -1.18E-03 0 0 0

15 0 0 0 0

16 1.63E-03 0 0 0

17 2.07E-03 0 -3.4641 -0.0072

18 0 0 0 0

19 -1.12E-04 0 -3.4641 0.0004

20 -1.70E-04 0 0 0

21 0 0 0 0

22 3.25E-04 0 0 0

23 4.65E-04 0 3.4641 0.0016

24 0 0 0 0
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Im
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Bxn
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Required Vertical Steering Trim 

Excitation

• From the table:   

3391.0
 3


H

H nx


 3391.0 3391.0

3

1

3

1

sextupole
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 

2

"
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"
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""'
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xBdxBB
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3
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hB
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• Substituting;  
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"
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2

"

0
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1

3

1


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hB

B

B

B xx 


0

1

 3391.03 


hB
NINI x

eeringVerticalSt

n
1 1

2 0

3 0

4 0

5 -0.7242

6 0

7 0.1369

8 0

9 0

10 0

11 0.0993

12 0

13 -0.0103

14 0

15 0

16 0

17 -0.0211

18 0

19 0.0011

20 0

21 0

22 0

23 0.0047

24 0

x

n

B

B

1

From the table, we note that the n=5 

multipole error is >70% of the 

fundamental (horizontal dipole) field 

at the pole radius.  



Horizontal Steering Trim

(Vertical Flux Lines)

• Horizontal steering trim can be achieved by exciting all six 

of the sextupole poles.  

+NI+NI

-NI-NI

Field 
Direction

+2 NI

-2 NI

The excitation of the 

vertical poles is twice the 

excitation of the horizontal 

poles.  



• Again, we can formulate the field in terms of the excitations 
of the various poles.  
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• Tabulating the results, 

n
1 9.79E-02 6 0 0.5874 1

2 1.56E-01 0 0 0 0

3 1.67E-01 0 0 0 0

4 1.33E-01 0 0 0 0

5 7.09E-02 6 0 0.4254 0.7242

6 0 0 0 0

7 -1.34E-02 -6 0 0.0804 0.1369

8 -1.07E-02 0 0 0 0

9 0 0 0 0

10 9.13E-03 0 0 0 0

11 9.72E-03 -6 0 -0.0583 -0.0993

12 0 0 0 0

13 -1.01E-03 6 0 -0.0061 -0.0103

14 -1.18E-03 0 0 0 0

15 0 0 0 0

16 1.63E-03 0 0 0 0

17 2.07E-03 6 0 0.0124 0.0211

18 0 0 0 0

19 -1.12E-04 -6 0 0.0007 0.0011

20 -1.70E-04 0 0 0 0

21 0 0 0 0

22 3.25E-04 0 0 0 0

23 4.65E-04 -6 0 -0.0028 -0.0047

24 0 0 0 0
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Required Horizontal Steering Trim 

Excitation

• From the table:   

5874.0
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
H

H ny


 5874.0 5874.0

3

1

3

1

sextupole

yy

NI

NI

B

B

H

H 
 

2

" 2

3@

hB
BB h 

0

3

 6

"



hB
NI sextupole and

• Substituting;   
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Skew Quadrupole Trim

(Horizontal Flux Lines)

• Skew quadrupole trim field can be achieved by exciting two 

of the sextupole poles.  

+NI

+NI

Again, we can formulate the field in terms 

of the excitations of the various poles.
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• Tabulating the results,

n
1 9.79E-02 0 0 0 0

2 1.56E-01 0 -2 -0.3120 1

3 1.67E-01 0 0 0 0

4 1.33E-01 0 2 0.2660 -0.8526

5 7.09E-02 0 0 0 0

6 0 -2 0 0

7 -1.34E-02 0 0 0 0

8 -1.07E-02 0 2 -0.0214 0.0686

9 0 0 0 0

10 9.13E-03 0 -2 -0.0183 0.0585

11 9.72E-03 0 0 0 0

12 0 2 0 0

13 -1.01E-03 0 0 0 0

14 -1.18E-03 0 -2 0.0024 -0.0076

15 0 0 0 0

16 1.63E-03 0 2 0.0033 -0.0104

17 2.07E-03 0 0 0 0

18 0 -2 0 0

19 -1.12E-04 0 0 0 0

20 -1.70E-04 0 2 -0.0003 0.0011

21 0 0 0 0

22 3.25E-04 0 -2 -0.0007 0.0021

23 4.65E-04 0 0 0 0

24 0 2 0 0
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Required Skew Quadrupole Trim 

Excitation

• From the table:   
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
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• Substituting;   
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Predicted n=4, 8 and 10 Multipole Errors

• Applying the perturbation theory, the multipole errors 

normalized to the skew quadrupole field, evaluated at the 

pole radius, h, can be computed.  

853.0

@2

4 










hxB

B
069.0

@2

8 










hxB

B
059.0

@2

10 










hxB

B

Magnetic measurements were performed on the SPEAR3 

production sextupole magnets with skew quadrupole windings.  

These measurements were evaluated at the required good field 

radius, 32 mm.   The predicted normalized multipole errors at 32 

mm can be computed.  
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• These prediction are compared with measurements.  
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Sextupole – Skew Quadrupole 

Field Error Measurements

Sextupole Skew Quadrupole "Allowed" Multipoles
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Closure

• In many ways, this is one of the most important lectures.  It 
is important that the student understands the chapter on 
Perturbations since successfully translating the performance 
of the mathematical design to the magnets manufactured 
and installed in a synchrotron requires that mechanical 
manufacturing and assembly errors translates into field 
errors which can threaten the performance of the 
synchrotron.  

• Understanding the impact of mechanical fabrication and 
assembly errors on the magnet performance and thus, the 
physics impacts of these errors, can provide the 
understanding so that mechanical tolerances can be properly 
assigned.  



Lecture 6

• The material covered in lecture 6 is covered 

in chapter 5 of the text.  

• Please read this chapter prior to the next 

lecture.  Homework covered in this chapter 

will be assigned.  


