
 

 

Orbit Correction Basics 
 

Orbit correction is one of the most fundamental processes used for beam control in 

accelerators. Whether steering beams into collision for high-energy physics, steering 

photon beams in a synchrotron light source or locating beam on target in a medical 

application, it is essential to control the beam trajectory. This section investigates closed 

orbit control for storage ring applications. Extension to steering in transport lines requires 

only minor modification.  

 

CORRECTOR-TO-BPM RESPONSE MATRIX 

The corrector-to-BPM response matrix is an vital piece of information for both orbit 

control and optics analysis. The response matrix can either be calculated (betafunction 

theory or numerical 'tracking' solutions) or measured directly on the accelerator. The 

basic format of the response matrix equation is 

 

 x = R 

 

where column vector x contains the orbit shift produced by incremental changes in the 

corrector magnets, . The response of BPMS to the corrector magnets is contained in R.  

 

An accelerator with m-BPMS and n-correctors produces an m x n dimensional response 

matrix. It is worth noting that the response matrix is really a sampled version of a 

continuous function that describes the effect of dipole perturbations at all points in the 

storage ring on all other points in the storage ring. The linear response of a single dipole 

perturbation is the well-known closed orbit formula: 
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In some sense, the closed orbit formula can be thought of as the Greens function or 

impulse response to a -function corrector impulse. The impulse is in position, not time.  

 

We often work with differential orbit and corrector changes rather than the absolute orbit 

and corrector values. The process of orbit control involves defining a differential orbit 

vector x and solving for the set of differential correctors, . 

 

LINEAR TRANSPORT THEORY (R12 PARAMETERS) 

From linear transport theory for a transmission line, particle position and angle evolve as 
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where Rtransport is a 2 x 2 transport matrix. The full 6 x 6 transport matrix includes motion 

in both transverse planes and in the longitudinal plane. The 12R elements describe beam 

motion at the i
th

 BPM (x) in response to a corrector kick at the j
th

 corrector position (x'). 

Each element of our 'response matrix' is also an R12 element of a transport matrix 

connecting corrector kicks to BPM readings but in this case for the closed orbit, not an 

open transmission line. The reason for using the R12 elements is that we can physically 

'kick' with corrector magnets (x') and 'observe' position at BPM sites (x). Throughout this 

course, we will use ‘’ for the angular deflection x' imparted by correctors. 

 

UNITS 

In MKS each element of the response matrix has physics units of m/radian, equivalently 

mm/mrad. It is not uncommon to make mistakes mixing mm/radian or m/mrad when 

trying to keep the units for the orbit and corrector vectors consistent.  For online 

applications, the response matrix can have hardware units such as mm/amp, mm/bit, 

volt/bit, etc. The trick is to keep units consistent. In the orbit control section of this course 

we use mm/mrad exclusively. 

 

ORBIT CORRECTION ALGORITHMS 

 Throughout the years, many orbit correction schemes have been devised. This course is 

concerned with the SVD approach presently in use at many accelerator laboratories 

worldwide. 

 

In principle, orbit correction seeks to invert the response matrix equations: 

 

 x = R 

  = R
-1

x 

 

When a BPM is malfunctioning, not used in the problem, or requires weighting, we strike 

out or weight the corresponding rows of  x and R. A similar process is used for corrector 

magnets and the columns of R and the rows of . 

 

 

1. Harmonic correction – the orbit is decomposed onto a sinusoidal set of basis functions 

and each component is corrected independently. This method has a solid physical basis 

because the orbit typically contains strong sinusoidal harmonic components centered near 

the betatron tunes.  

 

2. Most effective corrector (MICADO) – the Householder transformation is used to find 

the most effective corrector. After each correction cycle, the next most effective corrector 

is found. Since corrector magnets produce strong harmonics centered near the betatron 

tunes, MICADO has proven and effective means to correct global orbit distortions.  

 

3. Eigenvector correction – the orbit is decomposed onto a set of eigenvectors for the 

response matrix. Since the response matrix contains significant structure near the betatron 

tunes, the dominant eigenvectors have sinusoidal structure near the betatron tunes. 

Similar to harmonic correction, the operator can select specific components for 



correction. The drawback of the eigenvector correction technique is that it requires a 

square response matrix.  

 

4.Least-squares – when the number of BPM readings exceeds the number of corrector 

magnets the response matrix becomes 'tall' (more rows than columns). In this case  least 

squares or weighted least-squares can be used to solve for the corrector pattern. 

Weighting of individual rows of R corresponds to weighting individual BPMS.  

 

5. Singular value decomposition – singular value decomposition performs the same 

functions as eigenvector or weighted least square corrections but is much more general, 

mathematically manageable, and numerically robust. In particular, where least-squares 

breaks down (non-invertible matrix R, singular value decomposition and the associated 

psuedoinverse produce the full set of eigenvector/eigenvalue pairs found in the general 

theory of linear algebra. 

   

6. constrained problems – Lagrange multipliers and linear programming techniques have 

been used to constrain errors in the solution vector and corrector magnet strengths. This 

is a proven, yet still active field of research. 

 

GLOBAL AND LOCAL ORBIT CORRECTION 

Global orbit correction refers to calculations that bring the global closed orbit to a desired 

position. A global orbit correction correction usually involves many BPMS and corrector 

magnets distributed throughout the storage ring. The desired orbit may be the 'golden' 

orbit used for operations or a variant for experimental purposes.  

 

Local orbit corrections or 'bumps' attempt to move the beam orbit in a restricted region. 

The smallest 'bump' is a 2-corrector bump when the magnets separated by 180 degrees in 

betatron phase. Otherwise 3 correctors are required to 'close the bump'. In terms of 

degrees of freedom, in a 3-magnet bump the first magnet deflects the beam and the next 

two are used to correct position and angle. Three magnet bumps are popular because the 

analytical solution can be written in terms of betafunction parameters. Pure position and 

angle bumps require four magnets (two to establish position/angle, two to restore 

position/angle). 

 

TYPICAL ORBIT CORRECTION ALGORITHM 

 1. establish reference orbit (beam based alignment) 

 2. measure response matrix 

 3. select BPMs, correctors and weights and number of singular values 

 4. measure actual orbit - check for bad readings 

 5. compute difference orbit 

 6. compute corrector strength from =R
-1
x 

 7. check for corrector currents in range 

 8. apply corrector currents 

 

 

 



 


