
Linear Algebra Primer 
 

This section reviews mathematical methods in linear algebra that are useful for orbit 

control and response matrix analysis in storage rings and linear accelerators. Although 

most physical problems are non-linear by nature, they often approximate linear systems 

for small amplitude motion or short timescales. Linearization turns otherwise intractable, 

non-linear problems into manageable linear problems.  A host of robust analytical 

techniques from linear algebra speed up the process of finding numerical solutions by 

orders of magnitude.  

 

INTRODUCTION 

Linear algebra is a branch of mathematics that concerns solving systems of equations in 

the linear approximation. The most basic system can be cast in the form 

 

   Ax = b 

 

where A is an m x n transformation matrix that takes column vector x into column vector 

b. Typical examples include beam transport or relativistic transformations. Note that 

column vector x has dimension n (the number of columns in A) and column vector b has 

dimension m (number of rows in A).  

 

For our applications, x will be a column vector of variables, and b a column vector of 

constraints. In orbit control, A is the corrector-to-BPM response matrix (R), x contains 

the desired corrector strengths () and b contains the orbit shift (x).  

 

 Theory:  Ax = b 

 Orbit Control:   R = x  (b => x,     x => ) 

 [Apologies for the syntax confusion surrounding ‘x’]


For response matrix analysis, A contains numerical derivatives, x contains model 

parameters and b contains measured response matrix data. 

 

Each element of the matrix A can be written as a partial derivative that tranforms from 

one variable set to another. Aij is a gain factor from the j
th

 input to the i
th

 output. The i
th

 

row of A concerns the i
th

  output. The j
th

 column of A concerns the j
th

 input. The value of 

the elements in A come from physics and geometry. An orbit response matrix has matrix 

elements 

 

   
j

i
ij

x
A




  

 

 

where xi is the orbit shift at the i
th

 BPM and j is the  kick at the j
th

 corrector. 

 

 



SIMULTANEOUS EQUATIONS 

Each row of Ax=b can be viewed as an equation for a plane in n-dimensions. 

 

   d = ax + by + cz                 (plane in 3-dimensions) 

 

or  
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The solution to the set of simultaneous equations is the location where n-dimensional 

planes intersect. Solving a matrix problem requires finding elements of the n-dimensional 

column vector x.  

 

For orbit correction applications, each row of R = x reads  

 

 'orbit shift = linear superposition of corrector kicks'   

 

Given an orbit constraint xorbit, the goal is to find the corresponding set of corrector 

magnets to move the beam to the desired position. Examples include steering of the entire 

closed orbit in circular accelerators  and closed orbit ‘bumps’ in linear or circular 

accelerator structures. We will focus on the typical over-constrained case where there are 

more constraints than variables but also look at the under-constrained case where there 

are more variables than constraints.  

 

COLUMNS OF A 

Another way to look at the system Ax=b is that column vector b is a linear combination 

of the columns in A. In this case, the elements of x are the coefficients of the column 

vectors, 

 

   nn xAxAxAb :22:11: ...  

 

In terms of linear algebra, the vector b lies in the column space of A - there is a linear 

combination of the columns in A that add up to produce column vector b.  

 

This approach has a physically intuitive interpretation for orbit control: each column of A 

is an orbit shift produced by one corrector magnet. A linear superposition of corrector 

magnets produces a linear combination of orbit perturbations that add up to give the orbit 

shift, b. Later we will make a singular value decomposition of A and the linear 

superposition will be on eigenvectors instead of individual correctors. 

 

 

 

 

 



OVER- AND UNDER-CONSTRAINED PROBLEMS 

In real life applications, often there is no exact value for x that satisfies Ax=b, 

particularly when the number of constraints is greater than the number of variables 

(m>n). Mathematically, there is no solution to the set of equations for intersecting planes. 

Equivalently, column vector b does not lie in the column space of A. To find a solution 

we turn to ‘least squares’ to minimize the geometric distance between column vectors Ax 

and b, i.e. to minimize the length of the error vector =min||Ax-b||
2
. Alternatively we turn 

to the more robust singular value decomposition that minimizes the length of the solution 

vector x. SVD also works when the matrix A is ‘ill-conditioned’ or ‘rank-deficient’ 

indicating the rows or columns of the response matrix are not linearly independent. 

 

 

FUNDAMENTAL SUBSPACES OF A 

Study of the fundamental subspaces of a matrix A takes us somewhat off the beaten path 

but provides a conceptual framework that will be useful when we get to singular value 

decomposition. SVD factorizes the matrix A into a product of matrices that contain basis 

vectors for each of the four fundamental subspaces of A. Recall from linear algebra that a 

subspace is spanned by a basis set, in this case sets of linearly independent vectors 

associated with matrix A. The SVD factorization of a matrix A is reminiscent of the 

eigenvalue/eigenvector factorization: 

 

 A = UWV
T
  (SVD) 

 A = XX
-1

  (Eigenvector) 

 

where U and V contain ‘eigenvectors’ and W contains ‘eigenvalues’ on the diagonal. The 

eigenvectors in U and V span the four fundamental subspaces of A 

 

The easiest example of a subspace of A is the column space: if a 4x4 matrix has four 

linearly independent column vectors, they span a 4-dimensional space. In other words, 

any column vector b in that space can be written as a linear combination of the four 

column vectors in the matrix. Matrix notation writes this in compact form, 

 

 Ax=b = (column1)x1 + (column2)x2 + (column3)x3 + (column4)x4 

 

Ax=b means finding combinations of columns of A that produce b. 

 

 

To be up front, the subspaces are: 

 

 1. column space of A:   (Ax=b) 

 3. null space of A   (Ax=0) 

 2. row space of A   (A
T
y=b) 

 4. left null space of A   (y
T
A=0) 

 

 



What are these subspaces and what do they mean for orbit control? Recall that an m x n 

matrix ‘A’ takes an n-dimensional row vector into an m-dimensional column vector. In 

other words, it takes row space (R
n
) into column space (R

m
). There are two subspaces in 

R
n
 and two subspaces in R

m
. In general, all four bases in all four sub-spaces are needed to 

diagonalize the m x n matrix A!  This is the job of SVD. We will see the mathematical 

structure and use diagrams to look at this further in the section on SVD. Paraphrasing 

Strang (A.M.M. 100,1993), here are short descriptions of the subspaces of A: 

 

Column Space of A – Think of matrix A as a function acting on the input vector x. The 

column space is the range of A: Ax=b. The column space is spanned by the linearly-

independent columns of A. Analogous to the practice of differential equations, Ax=b has 

particular solutions ‘x’ which are linear combinations of the columns of A. 

 

Row Space of A – The row space is spanned by the linearly independent rows of A.  The 

row space and column space have the same rank, r=rank(A). Taking the transpose of A 

we have A
T
y=b. In this case, b is a linear combination of the columns of A

T
 (rows of A). 

b lies in the range of A
T
. 

 

Null Space or Kernel of A – The null space is spanned by the set of vectors satisfying 

Ax=0. They are the homogenous solutions. In orbit correction, if you apply a 'null' 

corrector pattern (in the null space) the orbit does not move at the BPMS(!). In order for 

matrix A to contain null vectors it must be rank-deficient, i.e. some rows or columns are 

linear combinations of each other. 

 

Left Null Space of A – The left null space is spanned by the set of vectors satisfying 

A
T
y=0 or y

T
A=0 (hence ‘left’ nullspace). Errors in least-squares analysis are relegated to 

the left null space of A. 

 

ORTHOGONALITY AND DIMENSIONALITY OF SUBSPACES OF A 

Just as vectors can be orthogonal (inner product zero) entire vector spaces can be 

orthogonal. When two vector spaces are orthogonal, all vectors in one space are 

orthogonal to all vectors in the other. For an m x n matrix A of rank(r), the four subspaces 

have the following properties: 

 

Input side (x-vectors in Ax=b with dimension R
n
) 

 

Row Space (dimension r)   is orthogonal to Null Space (dimension n - r) 

 

Interpretation I: given a particular solution xp to Axp=b, any homogeneous xh solution 

Axh=0 is orthogonal: 0 hp xx  

 

Interpretation II: corrector sets can be decomposed into components lying in the row 

space and components lying in the null space. Eliminating the null space component does 

not move the beam at the BPMS but reduces the overall strength of the corrector set 

(corrector ironing). 

 



 

Output side (b-vectors in Ax=b with dimension R
m

.) 

 

Column Space (dimension r)   is orthogonal to  Left Null Space (dimension m - r) 

  

Interpretation I: given a least-squares problem Ax=b, the solution x must is only for the 

component of b in the column space of A. The error vector lies in the (complementary) 

left null space. 

 

Interpretation II: An orbit in the left null space of a response matrix R cannot be corrected 

by the correctors associated with R. 

 

 

 


