Least Squares Fitting

Least-squares fitting is common in experimental physics, engineering, and the social sciences. The typical application is where there are more constraints than variables leading to 'tall' rectangular matrices \((m>n)\). Examples from accelerator physics include orbit control (more BPMS than correctors) and response matrix analysis (more measurements in the response matrix than variables).

The simplest linear least-squares problem can be cast in the form

\[A \mathbf{x} = \mathbf{b} \]

where we look to minimize the error between the two column vectors \(A\mathbf{x}\) and \(\mathbf{b}\). The matrix \(A\) is called the design matrix. It is based on a linear model for the system. Column vector \(\mathbf{x}\) contains variables in the model and column vector \(\mathbf{b}\) contains the results of experimental measurement. In most cases, when \(m>n\) (more rows than columns) \(A\mathbf{x}\) does not exactly equal \(\mathbf{b}\), ie, \(\mathbf{b}\) does not lie in the column space of \(A\). The system of equations is inconsistent. The job of least-squares is to find an ‘average’ solution vector \(\tilde{\mathbf{x}}\) that solves the system with minimum error. This section outlines the mathematics and geometrical interpretation behind linear least squares. After investigating projection of vectors into lower-dimensional subspaces, least-squares is applied to orbit correction in accelerators.

Vector Projection

We introduce least squares by way projecting a vector onto a line. From vector calculus we know the inner or 'dot' product of two vectors \(\mathbf{a}\) and \(\mathbf{b}\) is

\[\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b} = a_1b_1 + a_2b_2 + \ldots + a_nb_n = |\mathbf{a}||\mathbf{b}|\cos\theta \]

where \(\theta\) is the angle at the vertex the two vectors. If the vertex angle is 90 degrees, the vectors are orthogonal and the inner product is zero.

Figure 1 – projection of \(\mathbf{b}\) onto \(\mathbf{a}\)
Referring to figure 1, the *projection* or perpendicular line from vector b onto the line a lies at point p. Geometrically, the point p is the closest point on line a to vector b. Point p represents the 'least-squares solution' for the 1-dimensional projection of vector b into line a. The length of vector $b - p$ is the error.

Defining \bar{x} as the scalar coefficient that tells us how far to move along a, we have

$$p = \bar{x} a$$

Since the line between b and a is perpendicular to a,

$$(b - \bar{x}a) \perp a$$

so

$$a \cdot (b - \bar{x}a) = a^T (b - \bar{x}a) = 0$$

or

$$\bar{x} = \frac{a^T b}{a^T a}$$

In words, the formula reads

'take the inner product of a with b and normalize to a^2'.

The projection point p lies along a at location

$$p = \bar{x} a = \left(\frac{a^T b}{a^T a} \right) a$$

Re-writing this expression as

$$p = \left(\frac{aa^T}{a^T a} \right) b$$

isolates the *projection matrix*, $P = aa^T / a^T a$. In other words, to project vector b onto the line a, multiply ‘b’ by the projection matrix to find point $p = Pb$. Projection matrices have important symmetry properties and satisfy $P^n = P$ – the projection of a projection remains constant.

Note that numerator of the projection operator contains the outer product of the vector ‘a’ with itself. The outer product plays a role in determining how closely correlated the components of one vector are with another.
The denominator contains the inner product of a with itself. The inner provides a means to measure how parallel two vectors are (\(work = force \cdot displacement \)).

MATLAB Example – Projection of a vector onto a line

```matlab
>>edit lsq_1
```

MULTI-VARIABLE LEAST SQUARES

We now turn to the multi-variable case. The projection operator looks the same but in the formulas the column vector 'a' is replaced with a matrix 'A' with multiple columns. In this case, we project \(\vec{b} \) into the column space of A rather than onto a simple line. The goal is again to find \(\vec{x} \) so as to minimize the geometric error \(E = |A\vec{x} - \vec{b}|^2 \) where now \(\vec{x} \) is a column vector instead of a single number. The quantity \(A\vec{x} \) is a linear combination of the column vectors of A with coefficients \(x_1, x_2, ..., x_n \). Analogous to the single-parameter case, the least-squares solution is the point \(p = A\vec{x} \) closest to point \(b \) in the column space of A. The error vector \(b - A\vec{x} \) is perpendicular to that space (left null space).

The over-constrained case contains redundant information. If the measurements are not consistent or contain errors, least-squares performs an averaging process that minimizes the mean-square error in the estimate of \(x \). If \(b \) is a vector of consistent, error-free measurements, the least-squares solution provides the exact value of \(x \). In the less common under-constrained case, multiple solutions are possible but a solution can be constructed that minimizes the quadratic norm of \(x \) using the pseudoinverse.

There are several ways to look at the multi-variable least-squares problem. In each case a square coefficient matrix \(A^T A \) must be constructed to generate a set of *normal equations* prior to inversion. If the columns of A are linearly independent then \(A^T A \) is invertible and a unique solution exists for \(\vec{x} \).

Figure 2 – multivariable projection
1) **Algebraic solution** – produce a square matrix and invert

\[A \bar{x} = b \]

\[A^T A \bar{x} = A^T b \]
(normal equations for system \(Ax=b \))

\[\bar{x} = (A^T A)^{-1} A^T b \]

The matrices \(A^T A \) and \((A^T A)^{-1} \) have far-reaching implications in linear algebra.

2) **Calculus solution** – find the minimum error

\[E^2 = |A \bar{x} - b|^2 \]

\[dE^2/dx = 2A^T Ax - 2A^T b = 0 \]

\[A^T Ax = A^T b \]

\[\bar{x} = (A^T A)^{-1} A^T b \]

3) **Perpendicularity** - Error vector must be perpendicular to every column vector in \(A \)

\[a_1^T (b - A \bar{x}) = 0 \]

\[\ldots \]

\[a_n^T (b - A \bar{x}) = 0 \]

or

\[A^T (b - A \bar{x}) = 0 \]

or

\[A^T A \bar{x} = A^T b \]

\[\bar{x} = (A^T A)^{-1} A^T b \]

4) **Vector subspaces** – Vectors perpendicular to column space lie in left null space

i.e., the error vector \(b - A \bar{x} \) must be in the null space of \(A^T \)

\[A^T (b - A \bar{x}) = 0 \]

\[A^T A \bar{x} = A^T b \]

\[\bar{x} = (A^T A)^{-1} A^T b \]
MULTI-VARIABLE PROJECTION MATRICES

In the language of linear algebra, if b is not in the column space of A then Ax=b cannot be solved exactly since Ax can never leave the column space. The solution is to make the error vector Ax-b small, i.e., choose the closest point to b in the column space. This point is the projection of b into the column space of A.

When m > n the least-squares solution for column vector x in Ax = b is given by

$$\tilde{x} = (A^TA)^{-1}A^Tb$$

Transforming \tilde{x} by matrix A yields

$$p = A\tilde{x} = \{A(A^TA)^{-1}A^T\}b$$

which in matrix terms expresses the construction of a perpendicular line from vector b into the column space of A. The projection operator P is given by

$$P = A(A^TA)^{-1}A^T \sim \frac{AA^T}{A^TA}$$

Note the analogy with the single-variable case with projection operator $\frac{aa^T}{a^Ta}$. In both cases, $p = Pb$ is the component of b projected into the column space of A.

E = b – Pb is the orthogonal error vector.

Aside: If you want to stretch your imagination, recall the SVD factorization yields V, the eigenvectors of A^TA, which are the axes of the error ellipsoid. The singular values are the lengths of the corresponding axes.

In orbit control, the projection operator takes orbits into orbits.

$$\tilde{x} = R\theta = R(R^TR)^{-1}R^Tx$$

$(R^TR)^{-1}R^T$ is a column vector of correctors, θ.

MATLAB Example – Projection of a vector into a subspace (least-squares)

```matlab
>>edit lsq_2
```

UNDER-CONSTRAINED PROBLEMS (RIGHT PSEUDOINVERSE)

Noting that $(AA^T)(A^TA)^{-1}$=I we can write Ax=b in the form
\[Ax = (AA^T)(A^TA)^{-1}b \]

or

\[x = (A^T)(A^TA)^{-1}b = A^+b \]

where \(A^+b \) is the *right pseudoinverse* of matrix \(A \).

MATLAB Example – Underconstrained least-squares (pseudoinverse)

\[
>> \text{edit lsq_3}
\]

WEIGHTED LEAST SQUARES

When individual measurements carry more or less weight, the individual rows of \(Ax=b \) can be multiplied by weighting factors.

In matrix form, weighted-least-squares looks like

\[
W(Ax) = W(b)
\]

where \(W \) is a diagonal matrix with the weighting factors on the diagonal. Proceeding as before,

\[
(WA)^T(WA)x = (WA)^TWb \\
x = ((WA)^T(WA))^{-1}(WA)^TWb
\]

When the weighting matrix \(W \) is the identity matrix, the equation collapses to the original solution \(x = (A^TA)^{-1}A^Tb \).

In orbit correction problems, row weighting can be used to emphasize or de-emphasize specific BPMs. Column weighting can be used to emphasize or de-emphasize specific corrector magnets. In response matrix analysis the individual BPM readings have different noise factors (weights).

ORBIT CORRECTION USING LEAST-SQUARES

Consider the case of orbit correction using more BPMS than corrector magnets.

\[
x = R\theta \quad \text{or} \quad x = \begin{bmatrix} R \end{bmatrix} \cdot \theta
\]

\(x = \text{orbit (BPM)/constraint column vector (mm)} \)

\(\theta = \text{corrector/variable column vector (ampere or mrad)} \)

\(R = \text{response matrix (mm/amp or mm/mrad)} \)
In this case, there are more variables than constraints (the response matrix R has m>n).
Using a graphical representation to demonstrate matrix dimensionality, the steps required to find a least squares solution are

\[
\begin{bmatrix}
R^T \\
\end{bmatrix} \cdot x = \begin{bmatrix}
R^T \\
\end{bmatrix} \cdot R \cdot \theta
\]

\[
\begin{bmatrix}
R^T \\
\end{bmatrix} \cdot x = \begin{bmatrix}
R^T R \\
\end{bmatrix} \cdot \theta
\]

\[
(R^T R)^{-1} \begin{bmatrix}
R^T \\
\end{bmatrix} \cdot x = \begin{bmatrix}
\theta \\
\end{bmatrix}
\]

or

\[
\theta = (R^T R)^{-1} R^T x
\]

The projection operator predicts the orbit from corrector set θ:

\[
\tilde{x} = R(R^T R)^{-1} R^T x
\]

and the orbit error is

\[
e = x - \tilde{x} = (I - R(R^T R)^{-1} R^T)x
\]

Note that in order to correct the orbit, we reverse the sign of θ before applying the solution to the accelerator. You will not be the first or last person to get the sign wrong.

Feynman’s rule: ‘If the sign is wrong, change it’.

MATLAB Example – Least-squares orbit correction

```matlab
>> edit lsq_4
```
Response Matrix Analysis Example

Response matrix analysis linearizes an otherwise non-linear problem and iterates to find the solution. The linearization process amounts to a Taylor series expansion to first order. For a total of \(l \) quadrupole strength errors the response matrix expansion is

\[
R = R_0 + \frac{\partial R_0}{\partial k_1} \Delta k_1 + \frac{\partial R_0}{\partial k_2} \Delta k_2 + \ldots + \frac{\partial R_0}{\partial k_l} \Delta k_l
\]

\[
R^{11} - R_{o}^{11} = \frac{\partial R_0^{11}}{\partial k_1} \Delta k_1 + \ldots + \frac{\partial R_0^{11}}{\partial k_l} \Delta k_l
\]

where the measured response matrix \(R \) has dimensions \(m \times n \) and all of \(\{R_0, dR/dk\} \) are calculated numerically. To set up the \(Ax=b \) problem, the elements of the coefficient matrix \(A \) contain numerical derivatives \(dR_{ij}/dk_l \). The constraint vector \(b \) has length \(mn \times n \) and contains terms from \(R-R_0 \). The variable vector \(x \) has length \(l \) and contains the Taylor expansion terms \(\Delta k_1, \ldots \Delta k_l \). The matrix mechanics looks like

\[
\begin{bmatrix}
R^{11} - R_{o}^{11} \\
\vdots \\
R^{1n} - R_{o}^{1n} \\
\vdots \\
R^{21} - R_{o}^{21} \\
\vdots \\
R^{2n} - R_{o}^{2n} \\
\vdots \\
R^{m1} - R_{o}^{m1} \\
\vdots \\
R^{mn} - R_{o}^{mn}
\end{bmatrix}
=
\begin{bmatrix}
\frac{\partial R_0^{11}}{\partial k_1} \\
\vdots \\
\frac{\partial R_0^{1n}}{\partial k_l} \\
\vdots \\
\frac{\partial R_0^{21}}{\partial k_1} \\
\vdots \\
\frac{\partial R_0^{2n}}{\partial k_l} \\
\vdots \\
\frac{\partial R_0^{m1}}{\partial k_1} \\
\vdots \\
\frac{\partial R_0^{mn}}{\partial k_l}
\end{bmatrix} \begin{bmatrix}
\Delta k_1 \\
\ldots \\
\Delta k_l
\end{bmatrix}
\]

The 'chi-square' fit quality factor is

\[
\chi^2 = \sum \left(\frac{R_{ij}^{\text{measure}} - R_{ij}^{\text{model}}}{\sigma_i} \right)^2
\]

where \(\sigma_i \) is the rms measurement error associated with the \(i \)th BPM.
SVD AND LEAST-SQUARES

The least-squares solution to $Ax=b$ where $m>n$ is given by

$$x_{lsq} = (A^T A)^{-1} A^T b$$

Singular value decomposition of A yields

$$A = U W V^T.$$

Using the pseudoinverse,

$$A^* = V W^{-1} U^T$$

leads to

$$x_{svd} = A^* b = V W^{-1} U^T b$$

Does $x_{lsq} = x_{svd}$ for over-constrained problems $m > n$?

Exercise: analytically substitute the singular value decomposition expressions for A and A^T to show

$$(A^T A)^{-1} A = V W^{-1} U^T.$$

Hence, SVD recovers the least-squares solution for an over-constrained system of equations.