
 

Eigenvalues, Eigenvectors and the Similarity Transformation 
     

Eigenvalues and the associated eigenvectors are ‘special’ properties of square matrices. 

While the eigenvalues parameterize the dynamical properties of the system (timescales, 

resonance properties, amplification factors, etc) the eigenvectors define the vector 

coordinates of the normal modes of the system. Each eigenvector is associated with a 

particular eigenvalue. The general state of the system can be expressed as a linear 

combination of eigenvectors. The beauty of eigenvectors is that (for square symmetric 

matrices) they can be made orthogonal (decoupled from one another). The normal modes 

can be handled independently and an orthogonal expansion of the system is possible.  

 

The decoupling is also apparent in the ability of the eigenvectors to diagonalize the 

original matrix, A, with the eigenvalues lying on the diagonal of the new matrix, . In 

analogy to the inertia tensor in mechanics, the eigenvectors form the principle axes of the 

solid object and a similarity transformation rotates the coordinate system into alignment 

with the principle axes. Motion along the principle axes is decoupled.  

 

The matrix mechanics is closely related to the more general singular value 

decomposition. We will use the basis sets of orthogonal eigenvectors generated by SVD 

for orbit control problems. Here we develop eigenvector theory since it is more familiar 

to most readers. 

 

Square matrices have an eigenvalue/eigenvector equation with solutions that are the 

eigenvectors xand the associated eigenvalues : 

 

  Ax = x 

 

The special property of an eigenvector is that it transforms into a scaled version of itself 

under the operation of A. Note that the eigenvector equation is non-linear in both the 

eigenvalue () and the eigenvector (x). The usual procedure is to first identify the 

eigenvalues and then find the associated eigenvectors.  To solve for the eigenvalues, we 

write the equation in the form 

 

  (A-I)x=0 

 

The equation shows that the eigenvectors xlie in the nullspace of A-I. From the theory 

of linear algebra, non-trivial solutions require that we choose  so that matrix A-I has a 

nullspace, that is, it must have determinant zero: 

 

   det(A-I)=0. 

 

The expression for the determinant should be familiar from linear algebra or from the 

theory of linear differential equations where an n
th

 order equation has been Laplace-

transformed, broken up into series of first order equations and arranged in matrix form.  

 



The spectrum of eigenvalues is found by solving for the roots of the characteristic 

polynomial or secular equation det(A-I)=0. In general there will be as many eigenvalues 

as the rank of matrix A. Repeated eigenvalues indicate linear dependence within the rows 

and columns of A.  

 

Once the eigenvalues are known, the associated eigenvectors are found by solving for x 

in the eigenvector equation:
 

  Ax = x 

 

or 

 

  (A-I)x=0
 

where  is now a known quantity. Numerically, the eigenvectors are often found using 

elimination. MATLAB makes it easy 

 

  A=randn(4,4);     

  A=A'*A; 

  [X,D]=eig(A) 

 

In terms of linear algebra, the eigenvectors span the nullspace of A-I. The dimension of 

the basis set is equal to the number of eigenvalues, which is equal to the rank of the 

original matrix A. More importantly the eigenvectors form an orthogonal set of vectors 

that can be used to expand the motion of the system. Each eigenvector is a normal mode 

of the system and acts independently. Solving for the eigenvalue/eigenvector pairs allows 

us to represent the system in terms of a linear superposition of normal modes.   

 

LINEAR SUPERPOSITION 

Analogous to Fourier series analysis which can decompose a waveform onto a set of 

sinusoidal basis functions, in this case the ‘basis functions’ are eigenvectors of the matrix 

A. To expand a vector in the vector subspace we form inner products. Let y be a vector in 

the subspace spanned by eigenvectors xi. 

 

  y = aixi 

 

The coefficients ai are found by taking the inner product of both sides of the equation 

with each eigenvector one at a time. Assuming ortho-normal eigenvectors (xi*xj=ij) 

yields  

 

  ai = y*xi 

 

The ai coefficients are projections of the vector onto the coordinate axes of the 

eigenspace. 

 

By linear superposition, 



 

  y = aixi = (y*xi)xi 

 

The analogy to quantum mechanics is the expansion of a wavefunction  on the set of 

orthogonal basis functions u: 
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DYNAMICAL SYSTEMS 

In dynamical problems (linear, time-invariant differential equations) we have a system of 

equations 

  Axx   

 

We can skirt the issue of Fourier/Laplace transformations by assuming exponential 

solutions of the form 
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or 

  Avv   

    

which is the eigenvalue/eigenvector problem by definition. The eigenvalue/eigenvector 

pairs are orthogonal and the system evolves as 
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The coefficients c1…cn are determined by taking inner products of both sides of the 

equation with eigenvectors v
i
 at time t=0. For driven systems, convolution integrals are 

required to develop the particular solution. 

 

SIMILARITY TRANSFORMATIONS    

Before leaving eigenvectors, lets examine how the matrix of eigenvectors leads to the 

diagonalization of matrix A leaving the eigenvalues of A on the diagonal. Assembling the 

eigenvectors column-wise into a matrix X, the eigenvector equations can be written 

 

  AX=X 

 

where  is a diagonal matrix with eigenvalues on the diagonal. Note that the matrix X is 

invertible because the columns are linearly independent. Pre-multiplying both sides by  

X
-1 

demonstrates the diagonalization of A with eigenvalues on the diagonal: 

 

  X
-1

AX=




This is the similarity transformation that rotates the original coordinate system onto the 

eigenvector coordinate system leaving the eigenvalues on the diagonal of the new matrix, 

. Decoupling of the eigenstates shows up as zero elements in the off-diagonal elements 

of . As Cleve puts it, 'the eigenvalue decomposition is an attempt to find a similarity 

transformation to diagonal form'. 

 

Similarly, 

 

  A=XX
-1

 

 

which provides a first look at the more general form produced by singular value 

decomposition,  

 

 A=UWV
T
.  

 

We will see how SVD operates on the orbit response matrix R to produce two sets of 

orthonormal orbit- and corrector eigenvectors that will be used as expansion bases for the 

orbit and corrector column vectors. The main conceptual difference is that SVD works 

with rectangular and rank-deficient matrices and generates a separate eigenspace for the 

orbit and correctors. SVD also produces real, positive singular values (eigenvalues) that 

can be truncated to control properties of the solution. The key is still orthogonality of 

eigenvectors, decomposition into eigenvectors, and eigenvalue scaling.  

 

 

 
 

MATLAB Example: Eigenvalues, Eigenvectors and Similarity Transformation 

 >>edit eig_1 


