USPAS, Winter 2008
Accelerator Physics
V.N.Litvinenko, E.Pozdeyev, T.Satogata

Problems in Home-works and Midterm Exam



Homework 1

Due date: Tuesday Jan 15, 2007

January 11, 2008

1 Basic relativity

(a) (3 points) In one dimension the work done by a force F acting through a distance dl is
dE = F dl. Show directly that increasing the Lorentz factor of a particle of mass m by
Ay changes the particle’s energy by

AE = Ay mc? | (1.1)

where the rest energy of the particle is £y = mc?. From this it follows that E = yFj.
Use this to show that
E? = p*c® + mct (1.2)

(b) (3 points) Show that an infinitesimal increase in energy dF is related to the infinitesimal

increase in momentum dp by '
dE

L
= ﬁz—ﬁ (1.3)
where # =v/c.

(c) (4 points) A unit charge particle of momentum p travels through a constant magnetic
field B, and is bent in a circular arc of radius p. Show that

Bp [T —m] = 3.3357 p [GeV/d] - (14)

2 RHIC energy and current

Gold ions ¥"Au™™ (A=197, Z=79) are injected into the Brookhaven Alternating Gradient
Synchrotron (AGS) with a kinetic energy of 100 GeV/u (i. e. GeV per nucleon). The AGS
accelerates protons up to a kinetic energy of 22.9 GeV for injection into Relativistic Heavy
Ion Collider (RHIC). The circumference of the AGS is 807.1 m, and the rest mass of a gold
(*TAut) ion is 183.434 GeV/c2.

(a) (4 points) What is the velocity of the injected gold ions?

(b) (3 points) What is the corresponding kinetic energy for '*7Au*" ions extracted from
the AGS for RHIC?

(c) (3 points) Why does the beam current increase although the circulating charge stays
constant during acceleration?



3 Basic collision kinematics

(a) (3 points) Show that the total energy for a head-on collision of two particles, each with
center of mass energy y.mmc?, is equal to the total energy of a fixed-target collision,
where one particle is at rest and the other has energy Yaamc?, where

Vixed = 2Vory — 1 (3.1)
Consider a charged pion decaying into a muon plus an antineutrino:
T =¥ =+ (3.2)
Use M+ = 140MeV /c2, m,, = 106MeV /c2, and ms = 0. |

(b) (3 points) In the rest system of the pion, what are the energies and momenta of the
muon and antineutrino?

(c) (4 points) For a moving pion with total energy U, = vM,c? find an expression for the
direction, 0, of the muon relative to the pion in the lab in terms of the angle g, in the
-in the pion’s rest system.
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(a) (2 points) An electron moves through a magnetic field with vector potential A = A(y, 2).

Find an additional invariant of motion from the independence of A from z. Write an
explicit expression for p, using this invariant.

(b) (2 points) Consider a magnet with mid-plane symmetry, H = ¢&,H(y) at #z = 0, shown

above, with 4 = Aly, z) inside the magnet and A = 0 outside the magnet. Consider an
electron entering the magnet in the midplane z = 0 with mechanical momentum

D= €Dz + éypy = p(€é; cos O + é,sin f) (4.1)

which enters the magnet, turns around in the magnet, and comes back out.




(c) (2 points) Show that the trajectory of the electron remains in the z = 0 plane.

(d) (2 points) Find the equation of the angle ¢ of the electron’s exit trajectory relative to
€, direction. :

(e) (2 points) Find the equation defining the penetration depth ym.x of the electron in the
magnet in terms of A(y, z = 0). You don’t have to solve this equation generally, but do
write down an equation that you could solve numerically for ¢max.

H\\\Ur : Use the Lorentz force to find (b), and use the canonical momentum to connect the
mechanical momentum with A = A(y, z = 0) for (¢,d).

5 The Lorentz Group

(a) (4 points) For the Lorentz boost

0100 0 010 00 0 1
= 1 000 R 0 000 . 0 0 00
K=t o000 |*®| 1000|0000 (8.1)
00 00 0 0 0 0 1 000
and rotation matrix
000 O 0 0 0O 00 0 0
2 . 000 O N 0O 0 01 . 00 -1 0
S=&1 o000 -1 |0 0 00 |"%|01 0 o (5.2)
0 01 O 0 -1 0 0 00 0 O
given in class, show that
€SP =-e8 @EK)P=¢RK for Ve=¢* where |e]=1  (5.3)
and, more generally,
(@S)P =-dSla? @RP®=aK|a? for Va-—a* (5.4)
(b) (4 points) Use these results to show that
A N\ 2
B i (@5)
e = I+ 22 sin|@| — ~— 2 (cos || — 1) (5.5)
R
and
o ()
— K — —
ePx :I+ﬁ: sinh || — —=% (cosh|ﬁ} —~1> (5.6)
168 18]

(c) (2 points) Are S and/or K symplectic?



Accelerator Physics: Homework 2

Due date: Wednesday January 16, 2007

1 EM similarity to Lorentz group

Consider an invariant equation of motion of a charged particle in a constant electromagnetic

field: _
du' € v d e

s S — =D D] = —F¢ 1.1
me—— = "F-ut [l =Dlu]  [D]=—F; (1.1)

where [u] is a 4-vector, and which has the general solution
[u] = eP*[ug] (1.2)

(a) (4 points) Write matrix [D]. Identify the similarity of [D] with the generator of the
Lorentz group, and find the analogy between boost, rotations, and components of the

electromagnetic field.
(b) (6 points) Write the explicit expression for M = e”* in the case of a pure constant

electric field (B = 0) and pure constant magnetic field (E = 0).

2 Cos-theta magnet

(10 points) Show that current distributed in a thin cylindrical shell with a strength
1
1(6) = = cos(n#) (2.1)
nmw

will produce a pure 2n-multipole distribution inside the cylinder.

3 Quadrupole gradient, inductance (Lee 1.12, p. 29)

From Maxwell, V x B = 0 in a current-free region, and the magnetic field can be derived
from a magnetic potential ®,, with B = —-V®,,.

(a) (2 points) For a quadrupole field with B, = Kz, B, = Kz, show that the magnetic
potential is ®,, = —Kxz + ¢ where ¢ is a constant. We can choose a gauge where ¢ = 0.

(b) (5 points) Equipotential curves are therefore zrz =constant. The pole shape of a
quadrupole is therefore a hyperbolic curve described by zz = a?/2 where a is the
half-aperture of the quadrupole. The magnitude of the field at the surface of the pole
is Bpole tip = K a. To avoid magnetic field saturation in the (typically iron) pole tip, the
pole tip field in a quadrupole is normally designed to be less than 0.9 Tesla, and the
achievable gradient is By = Bpgle tip/a. Show that the gradient field is :

Bl = 2#0]\71/(]/2 » (31)

where NI is the number of ampere-turns per pole.



(c) (3 points) Show that the inductance of a quadrupole of length [ is '

8uoN% ([,  a*
L= — 3.2
a? ‘e 12x2 ' (32)

where z. is the distance of the conductor from the center of the quadrupole.

4 Dipole edge focusing (Lee 2.2.2, p. 73)

(10 points) Sector dipoles are bent so the end faces of the magnet are perpendicular to the
design particle entry and exit angles. When a particle enters a sector dipole at an angle
& with respect to the design trajectory, it experiences some focusing. This phenomenon is
usually referred to as edge focusing. We use the convention that 6 > 0 if the particle is closer
to the center of the bending radius. Show that the transport matrices through the dipole
for horizontal and vertical motion of the particle are

10 1 0
M, = < tand 4 ) My = ( _tand > (41)
p

The edge effect with § > 0 produces horizontal defocusing and vertical focusing.

5 Gaussian luminosity (Lee 1.7(b), p. 27)

The total counting rate of a physical interaction at a single collision point is given by R = Lo,
where ¢ is the cross-section of the interaction and the luminosity £ (in units of cm™ s77)
is a measure of the interaction probability per unit area and time. When two accelerator
bunches with relativistic velocities 8 collide head-on,

£=2fNiNe [ p1(a,5,50) oo,y 52) e dy d et (5.1)

where s; = s + Bct, s, = s — Bct, f is the collision frequency, N; and N, are the number
of particles in ‘each bunch, and p; and p, are the normalized distribution functions for both
bunches.

(a) (5 points) Using a Gaussian bunch distribution,

1 .%‘2 y2 82
_ _E Y 5.2
P,y 5) (2m)320 040, =P [ 202 20 207 (5:2)

where 0., 0y, and o, are the rms horizontal, vertical, and longitudinal beam sizes, show
that the luminosity for two bunches with identical distributions is

_ NN
dnozoy

L (5.3)

(b) (5 points) Show that if two bunches collide with a vertical offset of Ay, the luminosity
is reduced by a factor of exp(—Ay*/407).



Accelerator Physics: Homework 3

Due date: Thurssday January 17, 2007

1 Dual-Lens Focusing

(10 points) Consider a lens system made up of a thin focusing quadrupole of focusing length
f and a thin defocusing quadrupole of focusing length —f separated by a drift space L.
Show that in either order of the quadrupoles, the system is net focusing if |f| > L.

2 Quadrupole Transport Matrix Using Sylvester’s Formula

(10 points) Find the transport matrix for a quadrupole with

) o v
H(z, Pz, Yy, Py) = (3” + kx2> -+ (Ey ~ ky2> (2.1)

for both positive and negative k, using the matrix exponent and Sylvester’s formula as
discussed in class. Compare your solution to the equation in Lee between (2.38) and (2.39). -
Hint: Use the fact that the Hamiltonian is decoupled.

3 Hamiltonian Symplecticity
Recall that the symplecticity condition for a transport matrix M is

‘ MSM =5" (3.1)
where M is the transpose of M and S is the block-diagonal symplectic form

5o ( e é)n (3.2)

where S? = —I. (S is rather like a matrix equivalent of i = +/—1.) A Hamiltonian system
has a Hamiltonian H that produces the equations of motion, Hamilton’s equations:

OH
X' =85— 3.3
F)e (3-3)
where X = (q1,p1,- -+ ,4n, Pn) are canonical coordinates and the prime indicates differenti-

ation with respect to s. The transport matrix or Jacobian M;; is defined as how particles
change with respect to their initial coordinates:

0X;
Mij = —t
7 8(Xo);

(3.4)
where (Xp); is the 7** component of the initial coordinates of a particle at s = 0, includ-
ing both positions and momenta. This is all we need to prove an important result: all

Hamiltonian systems (even nonlinear ones) are symplectic.

1



(a) (2 points) What is M(s = 0)? (This should be self-evident from Eqn. (2.4).)

(b) (3 points) Demonstrate that M’ = SY M using Hamilton’s eqations, where Y is the
symmetric matrix that has components

0H

Y; . _—
= 5X, 06X,

Ik

(3.5)

(c) (3 points) Show that (M S M) = 0 by distributing the differentiation among M and
M, and using the result of part (b). ‘

(d) (2 points) (M S M) = 0 implies that (M S M) is independent of s and therefore a
constant. Evaluate this constant at s = 0 using part (a) to show that M is symplectic
— that is, obeys Eqn. (2.1) for all time s.

4 Perturbed Harmonic Oscillator and Canonical Coordinates

For the perturbed harmonic oscillator Hamiltonian

2 2
P q
H(p,q) = 5 +w' < + ¢ Hy(p,q) (4.1)

where € - Hy(p, q) is a weak perturbation with ¢ < 1, the system can be parameterized with
an amplitude o and phase ¢ as:

_a
q_\/‘;

(a) (2 points) Show that the transformation (q,p) — (Q = ¢, P = I = a?/2) is canonical.

cos(wt + ¢) p= —av/wsin{wt + ¢) (4.2)

(b) (3 points) Show that the area of the ellipse inside the the trajectory in the phase space
(¢q,p) is 7l.

(c) (2 points) Show (directly!) that in the new canonical coordinates, the new Hamiltonian
can be written as

H(p,q) =¢- H, (—\/QI—wsin(wt + ), v/ 21 Jw cos(wt + 90)) (4.3)

(d) (3 points) Using Hamilton’s equations and the solution for H, write the equations of
motion for (p,I). These should look like harmonic oscillator equations, relating, for
example, ¢ to .



Accelerator Physics: Homework 4

Due date: Monday January 21, 2008

1 Propagating Courant-Snyder Parameters

Suppose you are given the Courant-Snyder parameters, or equivalently the J-matrix,

J(S):( als) — B(s) > (L.1)

—=(s) —als)
at one point in a ring where the one-turn transport matrix is

M(s) =Icosp+ Jsinp = cosg—ka({;)smg ﬂ(_s)sm,u. = 1 M2
~(s) sin p cos pu — a(s)sinp M1 Mo

(1.2)
The Courant-Snyder parameters can be found at other points with the use of the appropriate
transfer matrices. Suppose J(s1) is the matrix representing a known set of parameters at
point s = s1, and we want to find J(s3). Let M(s1, so) be the matrix propogating the motion
from point s = s; to point s = sp. M(s1, s2) cannot be written in the form of (1.2) because
this transport is not periodic, but we can find it anyway.

(a) (3 points) Show that the J-matrices at the two points are related by

.](52) = M(Sl,SQ) J(Sl) M_1(51,52) (13)
(b) (7 points) Show that the parameter relations are
B(s2) = miB(s1) — 2muymaza(s:) + miyy(s:)
afsg) = —72711177%215(51) + (ma1mag + maamar)a(s1) — miamazy(s1)
v(s2) = m30(s1) — 2mamasa(s1) + miyy(s1) (1.4)

where the m;; are the matrix elements of M(sq, s2).

2 Phase Advance From Transport Matrix

(a) (7 points) Show that the phase advance from point s = s; to point s = sy through a
section described by the transport matrix M (sy, s2) is given by:

A1 = tan~! ( 2 ) 2.1

¥ B(s1) mur — als1) mie @1)
where the m;; are the matrix elements of M (s1, s2) and B(s1) and a(s;) are the Courant-
Snyder parameters at point s = s;.

(b) (3 points) Check this expression by demonstrating that Ay = p for M(sy,s1 + C),
where C' is the accelerator circumference.

An observation that you don’t have to do for homework: (1.4) can be solved to find the
elements m;; of M(sq,s3) in terms of the Courant-Snyder parameters at s; and s, and the
phase advance Ay given by (2.1). We will cover this next week in class.




Accelerator Physics: Homework 5

Due date: Tuesday, January 22, 2008

1. Coupling non-linear resonance

Consider an uncoupled linear motion in a storage ring, parameterized by
X = \/iwx(s) cos(y (N +@,); y= \/Zwy(s) COS(I/Jy(s) +Q, ),
in the presence of additional non-linear term in the Hamiltonian
H,, =a(s)x"y".
All coefficients above are periodical with the ring circumference, C, except the betatron
phases
Y, (s+C)=y, (s5)+270, .
Here: n, m, k, | are integer numbers.
(a) (5 points) write slow equation of motion for the action-angle variables;

(b) (5 points) consider resonant conditions nQ, + mQ, = k + 60; |6Q| <<1,i.e. a sum
resonance, and find the expression for the resonant term in the Hamiltonian and
the slow equations of motion;

(c) (5 points) consider resonant conditions nQ, —mQ, =[+06Q; [60|<<1lie.a
difference resonance, and find the expression for the resonant term in the
Hamiltonian and the slow equations of motion;

(d) (10 points) show that in the resonance approximation |6Q| <<1, we have
additional invariants of motion: n/ —ml = inv for the sum resonance and
nl, +ml_=inv for the difference resonance. Derive your conclusions on what
resonance can be more dangerous from a perspective of continuous growth of the
amplitudes (i.e. possibility to loose a beam at the walls of vacuum chamber)?

(e) (5 points) qualitatively answer the question if this term in the Hamiltonian can
drive other NQ + MQ =K + 0Q; N =n;M = m in the first order of perturbation
theory?



2. Twisted quadrupole

(a) (20 points) Find 4x4 matrix of twisted quadrupole, i.e. a quadrupole whose poles
have torsion. The transverse Hamiltonian of this magnet is:
2 2 2 2
T+ -
h=— 5 -+ K, al 2y +K(ynx—xny)
(b) (5 points) Identify when motion in both x and y direction is stable, i.e. there are
no growing solutions?

3. Sextupole terms
Consider an uncoupled linear motion in a storage ring, parameterized by

\/iw (s)cos(y, () +@,); \/ﬁw (S)COS(UJ ($)+ (PV),

in the presence of sextupole fields:

T+ x?—y? x*=3y°x
h=—"—77=2+K(s +K,(s)——
2 1( ) 2 2( ) 2
(a) (20 points) Find (in a form of integrals) first perturbation order terms in
p g P

Ix’ (px’ Iy’ (py‘

(b) (5 points) Show that far from resonances, there is no average growth in the
actions and there is no tune dependence on the actions.

(c) (25 points) Write second order perturbation term for ¢_and demonstrate that

there will tune shift proportional to the action and to the second order of sextupole
strength.



Accelerator Physics: Homework 6

Due date: Wednesday, January 21, 2008

Problem 1. Sextupole terms
Consider a linear oscillator

21
= _ ; = ! = — 2 I ] .
X =, - cos(ws+ @); 7, = x' =2l sin(ws + @)

x=Acos(ws+@); 7, =x'

= —wAsin(ws + @),
in the presence of quadratic non-linear term (sextupole term) in the Hamiltonian:
2 2 3
h="s 0t vk,
2 3
(a) (20 points) Find first perturbation order terms in I, ¢.

(b) (5 points) Show that far from resonances, there is no average growth in the
actions and there is no tune dependence on the actions.

(c) (25 points) Write second order perturbation term for ¢ and calculate the tune shift
proportional to the action and to the second order of K.

Suggestions: (a) note that w = const, (b) you may use Canonical pair (I,(p) or use

reduced equation of motion derived by Dr. Pozdeyev in his lecture for (A,¢). Both
methods will give you the same result.



Accelerator Physics: Homework 6’

Due date: Wednesday January 23, 2008

1 Quadrupole Lie Map

(a) (15 points) Demonstrate that the 1D thin-lens quadrupole Lie operator

exp <:—%x2 :) (1.1)

gives the correct thin-lens quadrupole kick when applied to particle initial coordinates
(%0, Pz0). (Hint: Review sections (2.2) and (2.4) of the notes, in particular the first few
equations of (2.4).)

(b) (20 points) Using the Cayley-Hamilton theorem, demonstrate that the 1D thick-lens
focusing quadrupole Lie operator

exp (: -g (kz® + p?) :) (1.2)

gives the correct thick-lens focusing quadrupole kick when applied to particle initial
coordinates (2o, psp). Here you should write the Lie operator in a bilinear form and use
the Cayley-Hamilton theorem to reduce the problem to the sum of two matrices.

Note how similar this process is to the process already performed in class using the D
matrix and Sylvester’s formula! v

(c) (5 points) Repeat part (b) for the thin-lens defocusing quadrupole Lie operator and
corresponding matrix kick. What happens if instead of changing the sign of p?, we
change the sign of z2, or 22 and p? together?



-

Space charge effects in accelerators.

Home Work
January 23, 2008

1 Problem (10 Points)

KV distribution is given by
flz, 7' y,p") = foo (f—: + -645 = 1)
where .
Ay = o1 + 20,z1’ + Bpz’?
Ay = wy® + 204yy" + Byy”

Show that projection of this distribution on the x,y plane is a uniform ellipse

er 2 9P
f($7y)_%H<1_¥—b_2>7

4)

where H(u) = 1 if w > 0 and 0 if w < 0. This is a uniform distribution within an ellipse with semi-axis a
and b. The parameters ¢, , are the horizontal and vertical beam emittances at the edge of the envelopes.

2 Problem (10 Points)

Show that for a Gaussian beam the envelope equations are

U”—I—KU :i+___£_
T 0l 2(0p +oy)
€2 £
ol + Ko, =% 4+ —>
Y i 02 2005 + 0y)

()

(6)




4 Play Homework

4.1 Numerical Chirikov Overlap of Beam-Beam Resonances

http://wuw.rhichome.bnl.gov/AP/Java/beamtune.html
Open the beam-beam map- Java example on the website in the URL above and play with it a
bit. This is a simplified model of the beam-beam interaction of two beams as was discussed
in class. Keeping the tune at @ = 0.331, set the beam-beam tune shift £ to zero, and click
within the black area to launch particles and produce Poincaré plots. With no nonlinearity,
these are all horizontal lines, consistent with constant action.

(a) Produce phase space plots by gradually 1ncreasmg ¢ by 0.001. With What ¢ do you
start to see resonance islands? :

(b) Vary ¢ up to about 0.03. How do the resonance .island locations and widths seem to
scale with £? What other harmonics of phase space distortion appear at small, medium,
and large amplitudes?

(c) As £ gets even larger, you will see more and more resonance islands appear at small
amplitudes. These islands remain small, but at some point { is large enough that
resonances start to overlap, and stochastic motion occurs consistent with the Chirikov
overlap criterion. Experimentally find the lowest value of £ where stochasticity occurs
to two significant figures. (Hint: It’s between 0 and 1.)

(d) Bonus: Using the equations on this web page, determine the amplitudes of stable and
unstable fixed points for Q = 0.331 and & = 0.01. Is this consistent with the claim that

the displayed amplitude ranges from 0-67




Accelerator Physics: Midterm Exam

Friday, January 18 2007

1 Zero Trace Matrix

(10 points) Show that if M is a 2x2 matrix with unit determinant and Tr(M)=0, then
M? = 1.

2 Multiple FODO Cell Concatenation

(10 points) Consider a FODO cell with phase advance of 27 /n in each plane. Show that the
matrix of the concatenation of n of these FODO cells is I.

3 FODO Cell Equivalence

S
S L L Ligv J;J Loyv

A v

(15 points) Consider a FODO cell with drift lengths L/2 and quadrupole focal lengths + f
as shown on the left. The transport matrix of this FODO lattice, starting with the focusing
quadrupole, was given in class as

Myopo (horizontal) = ( (1) L1/2 ) ( ; (1) ) ( (1) L{Q ) ( _1% ? ) (3.1)

L L2 L2
_ (1 m e Lty (3.2)
__L 1+ L
272 2f

in the horizontal plane.

(a) Show that Mpopo(horizontal) can be written as Moro(horizontal) — that is, as the
horizontal transport matrix of a single quadrupole of focal length fg between two
straight sections of (possibly different) lengths Lz and Loy, as shown on the right.
How do (fm, Lig, Log) relate to (f, L) of the FODO cell?

(b) Show that the vertical transport matrix of the same FODO cell, Mpopo(vertical) can
be written as Moqo(vertical) with quadrupole focal length fi and lengths Ly and Loy .
How do these relate to the horizontal OFO cell parameters found in part (a)?



4 Beta Function At A Waist

(20 points) The transport of the envelope function w(s) from a local minimum of value wy
through a drift space of length s is given by:

(i)

(a) Show that

2 2, 5
= — 4.2
w?(s) =+ 7 (12)
or, equivalently,
2
s
B(s) = Bo+ - (4.3)
Bo

Thus the beta function near a waist (or local minimum) in a drift region is quadratic.

(b) From (4.1), calculate the phase advance Ay as s — oo. This is half of the maximum
phase advance of a field-free region.

5 Solenoid Transport Matrix

(25 points) Consider a solenoid of length L with only longitudinal field B;. The torsion to
decouple the Hamiltonian is
eB,

2pc

K= (5.1)
and the resulting Hamiltonian in rotating frame of reference canonical coordinates (z,7,)
and (y,m,) is

m z +m Z 2 22 +y?

H(z, 7y, y,my) = 5 5 (5.2)
Find the transport matrix of this solenoid.
6 Azimuthally Symmetric Optics
(30 points) Consider an azimuthally symmetric ring with orbit radius p = KLO and a field
gradient
e 0B

where n is known as the field index. The Hamiltonian for transverse motion does not depend
on s, and is given by
72+ 72 2

y 2 x 2y

H(:L‘,ﬂ'z,y,ﬂy) =

(a) Find the one-turn matrices for horizontal and vertical motion.
(b) Find the horizontal and vertical tunes, v, and show that v2 + 12 = 1.

(c¢) Find the beta function of this storage ring.



