Part 3: Nonlinear optics and environmental
effects



What’s nonlinear about nonlinear optics?

Dielectric polarization is not a linear function of E field
- Has terms in higher orders of E (see RWV page 695)
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Stimulated Brillouin scattering

. Problem mainly for CW transmission
o Moving acoustic grating (remember AO frequency shifter) created by the signal (pump) and scattered wave
interfering

- Sends light backwards, efficiently but noisily
J Gain length is fiber length or pulse length
J Numbers for bandwidth, frequency shift
J How to avoid
- Minimize fiber length
- Stay below threshold
- Use short pulses (bandwidth, gain length)
- Modulate to spread spectrum (beyond bandwidth)
- Use larger core fiber Ae ff
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Stimulated Raman scattering (SRS)

. Molecular energy levels

. Problem for high intensity pulses

. With dispersion, the pump and “stokes” pulses will “walk off”’, limiting gain length
. If intense enough, Stokes-shifted pulse will generate another order

. How to avoid

Minimize fiber length

Stay below threshold

Increase dispersion (shorten walk-off length)
Hard to modulate beyond bandwidth

Use larger core fiber

. Has been used as an amplification process

Raman signal increases with distance as
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A rule of thumb for threshold power:
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Self-phase modulation

Mainly a problem for short, intense pulses

Intensity-dependent index means that n is changing during the
pulse (show equation for accumulated phase, or B integral)

Phase modulation follows envelope

— Thus a parabola-like pulse would add phase quadratically,
result in linear frequency chirp (derivative of phase)

- Dispersion will rearrange the frequencies, to spread or

compress the pulse (depending on dispersion sign) -
If in a birefringent fiber, can modulate polarization _Ii'n_'
—  This is common mechanism for modelocking -
Can be used to spread spectrum of pulses to cover larger lt-;-l; L
bandwidth, useful in spectroscopy and stabilizing lasers g 0.5
- Special, “highly nonlinear fiber” made for this application a !
(tiny core, low dispersion) -
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Optical frequency mixing

*  With second order nonlinearity, cross terms can include sum and difference
- RWV p. 697
- With two input waves of same frequency, sum is the second harmonic

* Typically used to detect overlap between two pulses (auto or cross-
correlation). Second harmonic signal is proportional to overlap of pulses

* Also used to generate second harmonic for CEO-stabilized lasers

- Sum and difference mixing is used to translate one laser wavelength to another,
to cover a wider spectral range, increasing the utility of a particular laser
medium

¢ Fiber lasers in the IR can cover visible and mid-IR ranges



Environmental effects on fiber

Temperature
Pressure (sound)
Bend loss

Radiation

Stress birefringence



Thermal effect

e Changes optical delay

- Changes both index of refraction (remember temp. coefficients in Sellmeier
equation), and length via coefficient of thermal expansion

- An/n = (o + §) AT
— O (expansion coefficient) = 0.55e-6/C for silica
- C (thermooptic coefficient) = ~6.7e-6/C for Ge-doped silica

- Thus An/n = ~7e-6/C (we observe 1e-5 or so)
e May increase due to plastic buffer
] For km lengths outdoors, this is hundreds of ps
- For An/n = 1e-5/C, 2km of fiber (10us delay), and 10C temperature change, delay
changes by 1ns
- Requires long optical delay controller
o Hard to measure on spools, due to thermal expansion of spool and nonuniform heating



Pressure effect

o Fiber sensors for sound and pressure
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Bend loss

e Stress changes the index of refraction of cladding, wave is not strongly guided
- Secondary effect of sharp geometric bend
e Can cause large accumulated losses
- Some attenuators work this way
* How to avoid
- Maintain minimum radii (>~1” for thin fibers in chassis)
- Prevent shifting of components and kinks
- Properly lay out components in chassis, use routing aids
- Route fibers in conduit carefully, preferably using special conduit
- Use robust cables that resist bending
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Radiation effects

. Radiation creates displaced charges (color centers)
. Color centers absorb light, causing loss
. Measurements have been done with gammas and neutrons

Loss reduces by “self-annealing” (charges recombine)
Loss is rate-dependent

. Radiation-hard fiber is manufactured
Doesn’t use Ge in core, rather dopes cladding to reduce n

Pure silica core has lower radiation absorption

Some fibers include a dopant to make charges more mobile, so they recombine
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Stress-induced birefringence

e Stress in one direction changes index differently for parallel and perpendicular
directions

e Just bending the fiber causes stress
e Small changes in radius or direction of bend will create large variations in polarization
- Possible to make a convenient polarization controller using loops
J How to avoid
Make all components polarization-independent (most common telecom solution)
Mechanically fix fiber
Use PM or PZ fiber
e PM is only good for a few meters, polarization couples for longer lengths

e PZis hard to work with, high loss, expensive, difficult to manufacture, hard
to splice...

Use an active polarization controller

e Commercially available, using EO, liquid crystals, stress, rotating
waveplates etc.



