Part 1: Overview of applications and stability measurements

Generic synch link

- A clock signal is sent to a remote location over optical fiber to a receiver
 - Various signal formats are possible
- The transmission delay is sensed and stabilized
 - Round trip delay is measured at the transmitter end
 - Various means of changing the delay or changing the signal are possible

What might one synch in an FEL?

- Femtosecond FELs with ~100fs x-ray duration need10-100fs timing stability over 100m to km distance (10⁻⁹)
- Accelerators with short bunches also need synchronization

Proposed systems: FLASH

Proposed systems: FERMI

Proposed systems: LCLS

Example requirements, FERMI

Table 9.2.3: FERMI client timing specifications.						
Timing client	Time structure of reference signal needed by the client	Electrical or Optical /duration	Frequency [Hz]	max. allowed jitter	Number of lines	
		[fs _{FWHM}]		[fs _{RMS}]		
RF, S-band	quasi-CW	Е	2.998010•10 ⁹	167	12	
		(t _{RF} >2 µs)	(EU S-band)			
RF, X-band	quasi-CW	Е,	11.992040•10 9	69	1	
		$(t_{RF}>2 \ \mu s)$	(US X-band)			
Photoinjector laser	CW	Е	FLASER OSC	200	1	
	pulsed cross-corr	О,	1 to 50 Hz			
	seeding	О,	FLASER AMP			
Seed laser	CW	Е,	Flaser osc	100	1	
	pulsed cross-corr	О,	1 to 50 Hz			
	seeding	О,	FLASER AMP			
User laser	CW	Е,	FLASER OSC	100	2	
	pulsed cross-corr	О,	1 to 50Hz			
	seeding	О,	$F_{LASER AMP}$			
Streak camera driver	pulsed, elec. trigger	E, 100 ps	FLASER OSC	500	2	
	pulsed, opt. trigger	O, 1 ps	1 to 50 Hz			
Streak camera fiducial	pulsed	O, 500 fs	1 to 50 Hz	100	2	
Bunch arrival monitor	pulsed	O, 1 ps	FLASER OSC	100	6	
E/O sampling station	pulsed	O, 100 fs	FLASER OSC	100	2	

Magnitude of the problem

• Delay changes for 1m and 1 degree C

Material	Coefficient of delay	Δ delay for 1m, 1 $\Lambda \textbf{C}$
Steel	15 x 10^-6 / AC	50fs
Aluminum	22 x 10^-6 / AC	72fs
Fiber	8 x 10^-6 / AC	40fs
Coax, teflon	-85 x 10^-6 / AC	-425fs
Coax, air heliax	-10 x 10^-6 / AC	-50fs
Air (thermal)	-3 x 10^-6 / AC	-10fs
Air (pressure)	2 x 10^-6 / 10 millibars	7fs / 10mbar
Air (humidity)	4 x 10^-6 / 10%RH	13fs / 10%RH

- Clearly, several factors have to be controlled or compensated for
- A timing system solves some of the problem by providing stable clock signals and timing control points
- Overall problem will require other kinds of systems as well

Fractional frequency and time stability

- Example: 10fs error budget over 1km distance
 - t = nl/c = 1.45*1000m/3e8m/s = 4.8us
 - 10fs/4.8us = 2e-9
- Say 10Hz shot rate, and 24 hours experiment duration
 - 2e-9 stability from 0.1s to 24 hours (~10^4 sec.)

Measuring clocks: Allan variance

× * TIME DIFFERENCE

Allan variance of some high stability clocks

- D. W. Allan, IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, UFFC-34, p647 (1987)
- Allan, Ashby and Hodge, HP Application Note 1289

Other types of Allan variance

$$\Delta^2 x_i = x_{i+2} - 2x_{i+1} + x_i$$

• Time (telecom)

Modified

٠

$$\operatorname{Mod}.\sigma_{y}^{2}(\tau) = \frac{1}{2\tau^{2}} \left\langle \left(\Delta^{2}\overline{x}\right)^{2} \right\rangle$$

$$\sigma_{\mathbf{x}}^{2}(\tau) = \frac{\tau^{2}}{3} \operatorname{Mod} . \sigma_{\mathbf{y}}^{2}(\tau)$$
$$= \frac{1}{6} \left\langle \left(\Delta^{2} \overline{\mathbf{x}} \right)^{2} \right\rangle,$$

Phase spectral density plot

- Power spectral density of the phase modulation sidebands, compared with the carrier, at an offset frequency f, and carrier frequency w_0
- Measured with a spectrum analyzer, or special but similar instrument
- Equivalent to the Allan deviation but used mostly for high frequency jitter rather than long term averaged measurements

$$\Delta t_{rms} = \frac{1}{n\omega_0} \sqrt{2 \int_{f_1}^{f_2} \mathcal{L}(f) \, df}$$

RMS time error from phase spectrum

$$L(f) = \frac{1}{2} S_{\phi}(f) = \frac{1}{2} \left(\frac{v_0^2}{f^2} S_y(f) \right)$$

phase spectrum from frequency spectrum

$$\sigma_{y}^{2}(\tau) = 2\int_{0}^{f_{h}} S_{y}(f) \frac{\sin^{4}(\pi f \tau)}{(\pi f \tau)^{2}} df$$

Allan variance from frequency spectrum

IEEE J. Selected Topics in QE, 7, p641 (2001)

RF oscillator and laser phase noise examples

Fig. 14. Absolute SSB phase noise of phase-locked Ti: sapphire laser at 80 MHz with two different types of pump laser, $i_0 = 3$ mA. (1) Argon-ion pump. (2) DPSS pump. (3) Calculated shot-noise limit. (4) Worst case system phase-noise floor, +12 dBm at RF port and +15 dBm at LO port.

- Knowing the whole spectrum is better than a single point!
- Integrated jitter number is useful, but need to know integration limits

Fig. 13. Absolute SSB phase noise of various RF sources operating at 80 MHz. ① HP 8662A synthesized output. ② HP 8640B using DCFM. ③ HP 8662A's internal 10-MHz crystal oscillator and $8 \times$ multiplier chain versus similar 10-MHz crystal oscillator with $8 \times$ multiplier chain. ④ Worst case system phase noise floor, +12 dBm at RF port and +15 dBm at LO port.