
  

Peak and RMS Voltage, Power

The DC power dissipated in a resistor is

For sinusoidal alternating current, with a period t, the voltage has the form

V = V 0cos t , t =
1
f

=
2


And the thermal power P deposited in the resistor is

P =
1
Rt∫V 2

 t dt =
1
2

V 0
2

R
(The integral of cos2 is ½ .)

Here, V0 is the peak voltage of the sine wave.   The ½ in the equation is a result
of the definition of the amplitude of the sinusoidal waveform.   

The usual definition of the amplitude of a sinusoidal AC waveform is the RMS
(root mean square) value, which is  

P = I V =
V 2

R
= I 2 R

V rms =
1

2
V peak Then Prms =

V rms
2

R
Peak fields are of interest in accelerators, as they define the energy gain
across a gap, for example, but the conventional definition is the RMS value
of the voltage or current.

What is the peak and peak-and-peak value of 120 volt AC line voltage?



  

Power Factor

Let's see how much power it would take to excite an accelerator gap.

A typical 200 MHz accelerator has an average field strength of 2 MV/m.  Our linac
is injected with by a 460 keV proton source, with a velocity b = 0.031.   Since
l = 1.5 meters, the cell length is 4.7 cm.   The accelerating gap is typically ¼ of
the cell length, or 1.17 cm.   The diameter of a typical drift tube is 21 cm.

We can calculate the capacitance of the gap.

C = 0
A
d

= 26 pF

The voltage on the gap is 2 MV/m times the cell length,
or 94 kV.

The capacitive reactance of the gap is 

X gap =
1

jC
= − j30.6 ohms

And the peak current at 94 kV to charge this capacitance is V/Xgap = 3070 amperes.

The RMS power is ½ V I  = 144 Megawatts!   (This is a lot of power!)



  

Resonant Energy Storage

To realize the benefit of a resonant structure, we will calculate the same configuration,
but now included in a single-cell linac cavity.    The SUPERFISH code will calculate
the actual parameters of the cavity.

For the same peak voltage across the gap, 94 kV, including
the power loss on all the walls, only 29 kilowatts is required.

If the end walls are removed, as in a longer structure of 
several cells, this cell will require only 7.74 kW.

This is a huge reduction in power, compared to exciting a capacitive gap in
a non-resonant system, a savings of about 18000.

The drive power to the linac cell is stored and built up over a period of time,
the filling time, to produce a high gap field.



  

Power Factor

In our example of driving a 26 picoFarad gap, notice that the driving voltage
and current are 90 degrees out of phase.

The power delivered by a voltage source supplying a current is actually the
vector product.   For voltage and current expressed as RMS quantities,

P = I V cos

where f is the phase difference between the voltage and current waveforms.

If f = 90 degrees, no actual power is delivered to the load.   However, the power
company is still supplying volts, and the wires are still carrying current, which spin
the wattmeter.   The term cos f is the power factor of the load.

Power Factor = 100% cos f

And the units are volt-amp, (KVA, MVA).  The most efficient load has a 100% power
factor:   the voltage and current are in phase.



  

Resonant Cavities

We saw that at resonance, a system can be driven to large amplitude with less
power than a non-resonant system, as energy is stored in the oscillator during
the build-up.

If the oscillator has no dissipation (loss), the stored energy will increase indefinitely.
If there is energy loss in the structure, it will be proportional to the stored energy
in the structure, which is proportional to the square of the amplitude of the fields,
and the fields will approach an asymptotic value.

At the asymptotic field level, the energy
loss per cycle is equal to the energy from
the source per cycle.

These structures are narrow band and
support fields at one particular frequency.

Some accelerator systems are wide band,
similar to the charged capacitor example
where special waveforms are required.
They are much less efficient.



  

Pillbox Cavity

A simple resonant cavity is the pillbox cavity.

The cavity supports an E-field along the axis, and

indicates that a B-field circulates around the axis in the azimuthal (f) direction.

The pillbox cavity forms the basis of the Alvarez accelerator cavity and a typical
buncher cavity.

We will analyze the fields and their modes in the pillbox cavity.

∇× H = 0
E



  

Boundary Conditions

The E and B (H) fields are subject to boundary conditions on metallic surfaces.

   No component of the E vector may be parallel to a metallic surface.  
   The E field vector is perpendicular to the surface.

   No component of the B vector may be perpendicular to a metallic  surface. 
   The B field vector is parallel to the surface.

The H field at the surface is mirrored by an equivalent current density J in the
surface (amps/meter), oriented 90 degrees in the metal to the direction of H
at the surface.

The surface current J will flow in the metal, and if the surface is lossy, will result
in power being dissipated in the material.



  

E-Field on Metallic Boundary

Between two parallel plates, the E-field is perpendicular to the plates.
(There may be fringe fields at the edges of the plates, but the E-vector
is still perpendicular.)

If a conducting rod or sphere is inserted 
between the plates, the E-field vector must 
terminate on the sphere  at right angles to 
the surface.



  

Analysis of the Pillbox Cavity

We will use cylindrical coordinates    r,  f,  z

The E-field vector is everywhere perpendicular to the walls.

The only field component is Ez

Ez = 0 on the sidewalls
Ef = 0 on the sidewalls

The H-field vector has no component perpendicular to any wall.
Hz = 0 on the endwalls
Hr = 0 on the sidewalls
Only Hf is present.

We have not said anything yet about the variation of Ez(z) along the cavity.



  

The Wave Equation for the Pillbox Cavity

The wave equation in cylindrical coordinates is  (Wangler page 28)

∂2 E z

∂ z2


1
r

∂ E z

∂ r


∂2 E z

∂ r 2
−

1

c2

∂2 E z

∂ t2
= 0

There are two sets of solutions to this equation

Transverse magnetic (TM) solutions:  Pillbox cavities, Alvarez linacs

Transverse electric (TE) solutions:  Deflecting cavities, RFQ linacs

Most accelerators are constructed with some sort of cylindrical symmetry,
so we can use the same set of coordinates for both analyses.

The wave equation is of the form that has Bessel functions as its solution.

z2 d 2 x
dz2  z dx

dz
 z2

−m2
 x = 0



  

The TM Modes

The TM solution to the wave equation in cylindrical coordinates has the form
(Wangler, page 30-31), with the sinusoidal time dependence removed:

E z ∝ J m kmn r  cosm cos k z z
E r ∝ p J 'm kmn r  cosm sin k z z

E ∝
p
r

J mkmn r  sinm sin k z z

Bz = 0

Br ∝ −
i
r
J mkmn r  sinm cos k z z

B ∝ −i J 'm kmn r  cosm cos k z z

m, n, p are integers that describe the mode of the solution.   
The Jm are Bessel functions of the first kind.  J'm is the derivative of the Bessel function.

k z =
 p
Lcav

,


2

c2 = kmn
2

 k z
2 J ' 0 z  = −J 1 z  , J '1 z  = J 0 z −

1
z
J 1 z  , ...

The i in the equations for B is          and indicates that the E and B fields are
90 degrees offset from each other in RF phase.

−1



  

TM Mode Indices m, n, p    TMmnp

The modes are described by three indices.

m is the number of variation of field 
of the azimuthal variable f:

m = 0, 1, 2, ...

p is the number of nodes of Ez along
the z-axis.

p = 0, 1, 2, ...

n is the number of nulls in Ez along the
radial direction

n = 1, 2, 3, ...



  

The TM010 Pillbox Mode

The boundary condition that Ez(a)  = 0  is satisfied
if k01 a = the first zero of J0.    (k01 a) = 2.405.

The radius of the cavity is a. 
m = 0, n = 1, p = 0.

k z =
 p
Lcav

= 0,


2

c2 = kmn
2
 k z

2
= k 01

2

We can solve this for the resonant frequency of the TM010 mode

k 01 =
2.405
a

,  = k 01 c , f =


2
=

2.405
2

c
a

For a pillbox cavity with a radius a = 1 meter, the TM010 mode frequency is

                                        f = 114.9 MHz

and is independent of the length of the cavity.

E z r  = A J 0 k 01r 



  

E z r  = E0 J 02.405
r
a 

The TM010 Fields

m = 0, n = 1, p = 0

m = 0 so sin mq = 0 so Br = 0

E z ∝ J m kmn r  cosm cos k z z
E r ∝ p J 'm kmn r  cosm sin k z z

E ∝
p
r

J mkmn r  sinm sin k z z

Bz = 0

Br ∝ −
i
r
J mkmn r  sinm cos k z z

B ∝ −i J 'm kmn r  cosm cos k z z

p = 0 so Er and Eq = 0

Bz is always zero

B r  = i B0 J 12.405 r
a 

Note that Ez is at a maximum on the axis
and zero at r = a, and that Bq is maximum
about ¾ of the way out.

E0 and B0 are constants.

J0

J1



  

TM0np Mode Spectrum

E z ∝ J m kmn r  cosm cos k z z
E r ∝ p J 'm kmn r  cosm sin k z z

E ∝
p
r

J mkmn r  sinm sin k z z

Bz = 0

Br ∝ −
i
r
J mkmn r  sinm cos k z z

B ∝ −i J 'm kmn r  cosm cos k z z

For m = 0, the modes are azimuthally
symmetric (no q dependence).

The TM0n0 modes show a radial dependence
of Ez(r) that has n zeros (including the zero
at the outer radius).   These modes are not
harmonically related, but lie along the zeros
of J0(k0n).  
Those values of k0n are 2.405, 5.520, 8.654...

For p > 0, Ez(z) has p nodes (zeros) along the 
z-axis.   The frequency of the TM0np modes for 
p > 0 depend on the length of the cavity, and 
Er and Eq have components which are non-
zero, except at the outer radius.


2

c2 = kmn
2
 k z

2, f =
c

2 kmn
2
 p

Lcav


2



  

Mode Mixing

These structures can be characterized as having a spectrum of frequencies.


2

c2 = kmn
2
 k z

2, f =
c

2 kmn
2
 p

Lcav


2

The lowest mode, p = 0, has a uniform Ez(z) distribution along the axis of
the accelerator.  Notice that the next higher mode is only slightly removed
from the fundamental mode, and has a Ez(z) distrbution that has one node
halfway down the linac.   

Energy can be coupled into this and higher modes by several methods, such
as construction errors or beam loading, and alter the desired field configuration
of the linac.   We will discuss this further.

This plot is a type of dispersion plot, which relates
the resonant frequency to the phase shift along
the axis of the field.



  

The TEmnp Modes

E z = 0

E r ∝
i
r
J mkmn r  sinm sin k z z

E ∝ i J ' mkmn r  cosm sin k z z

Bz ∝ J mkmn r  cosm sin k z z
Br ∝ p J mkmn r  cosm cos k z z

B ∝ −
p
r
J m kmn r  sinm cos k z z

k z =
 p
Lcav

,


2

c2 = kmn
2
 k z

2

Here, kmn = x'mn/Rcavity and the x'mn

are the zeros of J'm.

x'01 = 3.832, x'02 = 7.016, x'03 = 10.174,...

m = 0, 1, 2,...   azimuthal
n =  1, 2, 3,...   radial
p =  1, 2, 3,...   longitudinal   (why not 0?)

The RFQ uses a TE210 mode of operation.

These are the transverse electric modes.



  

Lumped-Circuit Equivalent of a Pillbox Cavity

A capacitor stores energy

U = 1
2
CV 2, C = 0

A
d

The inductance of an
inductor is a comples
function of its area A.

A

The energy stored is U = 1
2
L I 2

Connect to form a resonant circuit, and
make the inductor smaller to raise the
frequency.

Put more conductors in parallel across the
capacitance, further raising the frequency.

Eventually, the
inductors form a
wall around the
capacitance, 
forming a pillbox 
cavity.



  

Energy Relations in a Cavity

Energy stored in a capacitor and inductor: U cap = 1
2
C V 2 , U ind = 1

2
L I 2

The electric and magnetic fields in a cavity are 90 degrees apart in RF phase.
At one instant in time, all the energy is stored in the electric field, and 90 RF
degrees later in the magnetic electric field.  

The stored electric and magnetic energies are integrals over the cavity volume,
each when the stored energy in the magnetic and electric fields is zero:

U E =
0

2 ∫cavity
E2

dV , U H =
0

2 ∫cavity
H 2

dV =
1

20
∫
cavity

B2
dV

By conservation of energy (no losses) U E = U H

So the total stored energy can be written, taking the values of the E and H fields
at their respective peak values

U cav = 1
4 ∫

cavity

0 E
2
 0 H

2
dV



  

Field Balance and Frequency Perturbation

Resonance may be defined as   UE = UH  , the frequency where the stored
electric field energy integral is equal to the magnetic field energy integral.

However, the distrbution of fields may be very different:  in a pillbox cavity,
the electric field is concentrated near the axis, and the magnetic field further
out near the sidewall.

We have the opportunity of tuning a
cavity by varying its geometry either
near the axis or the outer wall.

In analogy to lumped circuit models, we can associate the high E-field
regions with electrical capacitance, and high H-field regions with electrical
inductance. 



  

If the endwalls of the cavity near the axis are 
moved together, the frequency will decrease. 
 
The capacitance between the endplates will 
increase, reducing the resonant frequency.  
Recall that for the TM010 mode, the cavity 
frequency is independent of cavity length.   
However, if we move the walls near the axis 
where Ez predominates, the frequency will 
decrease.  Here, we have removed volume 
that is occupied by E-field.

If the sidewalls of the cavity are pushed in, 
the equivalent loop area of an inductor is 
decreased, and the frequency will increase.  
Here, we have removed volume that is 
occupied by H-field. 

Remove E-field volume to decrease frequency,
remove H-field volume to increase frequency.

Moving Walls



  

Slater Perturbation Theorem and Bead Pulling

How can we measure the actual field distribution in a cavity?

We cannot just put a voltmeter test probe in the cavity.  (A probe measures potential,
anyway, not field, and it will disturb the field configuration in the cavity.)

By removing small volumes of E-field or H-field, or both, we can upset the energy
balance UE = UH in such a way that a new resonant frequency will be re-established,
restoring the energy balance.  This shift will be proportional to the volume of field
energy removed.

This is known as the Slater Perturbation Theorem, and the technique of its use is
known as Bead Pulling, (Wangler, page 162). 

A metallic or dielectric bead is suspended on a thin thread and moved around inside
the cavity.   The frequency perturbation is then measured.   The angular frequency is
shifted, depending on the volume of E or H field that is removed by the bead.


2
= 0

2 1  k
∫
bead

0 H
2
−0 E

2
dV

∫
cavity

0 H
20 E

2dV 
The frequency shift is proportional to the difference in H and E-field energy removed
by a bead.



  

Bead Pulling

The electric and magnetic field can be separately measured in the same
location by using both a metallic bead, which removes E and H-field volume,
and then retracing the path with a dielectric bead, which alters the E-field only.

Subtracting one measurement from the other will separate the E and H fields
in the path of the bead.


2
= 0

2 1  k
∫
bead

0 H
2
−0 E

2
dV

∫
cavity

0 H
20 E

2dV The constant k depends on
the geometry of the perturber.
For a sphere, k = 3.

For small perturbation in frequency,
where t is the volume of the bead.
The frequency shift is proportional
to the square of the field intensity.


0

=
3

4U cavity

0 E
2−

1
2
0 H

2

The beam is usually drawn through
by a motor drive, and the measured
frequency shift recorded on a computer.



  

Shunt Impedance of a Lumped Circuit

Consider a lumped-circuit model
of a lossy resonantor.

I1 is a current source with infinite
internal impedance.  It feeds energy
into the LC resonant circuit.

A resistor R1 shunts the circuit, with
a loss V2/R.

When the generator is turned on, the voltage in
the circuit builds up to an asymptotic limit.  At
this limit, the energy supplied to the circuit equals
the dissipation in the resistor.

The stored energy in the resonant circuit is

U = 1
2
C V 2

= 1
2
L I 2

Which is larger than the energy delivered by the
generator in one RF cycle.



  

Circuit Q

The quality factor, or Q of a resonant circuit is 
proportional to the total stored energy of the
circuit divided by the power lost per cycle.

Q =
U
P

The Q of a resonant cavity is a measure of the power loss in the walls of
the cavity due to the current flowing through walls of finite resistivity.

The reactance of the L and C in
the lumped-element circuit are

X L =  L , X C=
1

C
At resonance, XL = XC.   For a  shunt
resistor R, the Q of the circuit is

Q =
R
X C

=
R
X L

The width of the resonance widens 
with lower Q.   The approximate
bandwidth is  f/Q. Frequency



  

Shunt Impedance of an Accelerator Cavity

The shunt impedance of an accelerator measures the effectiveness of transforming
input RF power to accelerating voltage.

Z sh =
V peak
2

2Prms

The shunt impedance Zsh relates the peak voltage across the gap to the rms 
RF power suppled from the power source.

The shunt impedance is directly related to the Q of the cavity.
 
The value Z

sh
/Q

0
 is independent of the wall resistivity of the 

cavity (assuming that it is constant over the entire cavity inner
surface).   Z

sh
/Q

0
 is entirely dependent on the geometry of the cavity.

Q =
U
P

The subscript “0” of Q
0
 refers to the quality factor of the cavity that does not have

any external circuit elements.   Since the cavity must have an RF source connected
to it, the actual Q is a function of the intrinsic cavity Q

0
 and the external circuit

elements, such as the RF coupler and source.  We will cover coupled systems later.



  

Skin Depth

High frequency (RF) current tends to flow along the surface, and not in the bulk
of conductors.   The apparent RF resistivity of a conductor is higher than the DC
resistivity.   The current flow through a conductor with finite resistance results in
the generation of heat.

The 1/e decay depth d of RF current flowing in a conductor is

 =  

0c
=  2

0
=  1

0 f 

Where l is the wavelength of the RF, s is the bulk (DC) conductivity of the conductor.

The bulk DC resistivity s = 1/r of a conductor can be measured on a sample of
cross-sectional area A and length L.   The ohmmeter measures a resistance R.

 = R
A
L
, R =

L
A

Conductivity s = 1/r [ohm-1 meter-1]



  

Skin Effect

Since the RF current flow is confined to the surface of the conductor, not its
bulk, the resistance may be expressed as resistance/square.  

The sheet resistivity (resistance/square) is

Rsq =
1


Where d is the skin depth and s is the bulk conductivity of the material.

For copper at room-temperature, r = 1/s = 1.724x10-8 ohm-meter.

At a frequency of 200 MHz, d = 4.7x10-6 meter,  R
sq

 = 0.0037 ohms/square.

Note that R
sq

 scales as f ½.



  

Power Dissipation on Cavity Walls

We have calculated the RF magnetic field distribution within the cavity.   The
current density [amps/meter] on the wall is numerically the same as the magnetic
field H [amps/meter] at the wall.

The power dissipation over an area element dA of the wall is

Pdiss =
R square
2 ∫

walls

H wall
2

dA

using the peak value of the magnetic field H
wall

 and the average (thermal)

value of the power P
diss

.   The lumped circuit analogy for a DC current I is

Pdiss=R I
2

The quality factor Q
0
 is purely geometric and is

Q0
Rsq

=
1
Rsq

U
P

=


1
4 ∫cavity

0E
20H

2dV

1
2 ∫walls

H 2 dA



  

Kilpatrick Criterion

High surface electric fields in a cavity can lead to electron emission and sparking.
Experiments carried out 50 years ago led to an empirical criterion of the safe surface
field limit in a cavity, above which electrical breakdown was probable.  The cavities
were provided with oil-pumped vacuum systems, unlike the clean organics-free
vacuum system we use today.

Kilpatrick established his formula for a safe surface field as a function of RF frequency.
The equation is in implicit form:

f [MHz ] = 1.64 E2 e−8.5/E

where the electric field E is expressed in units of MV/m.  

Freq [MHz]  E [MV/m]
    200            14.7
    400            19.4
   1300           32.1

Today, with much cleaner vacuum systems, cavities are operated at much higher
surface electric field levels.  Fields in accelerators are still sometimes expressed
in units of kilpatrick.   Now, better physics models are known to predict the surface
breakdown field, but kilpatrick is here to stay.

It is known that this formula significantly underestimates the sparking limit at 
frequencies lower than 200 MHz.  At higher frequencies, the criterion scales
approximately as f 0.4.



  

Groups of Cavities – Coupled Oscillators

As an illustration of the modes of coupled oscillators, we'll consider two pendula.

The second-order differential equation for the oscillation angle q of a pendulum is

d 2


dt2


g
L
sin = 0

This is a nonlinear equation, but for small angles, sin~

which is solved by t  = 0 cos t , 2 =
g
L

Now, consider 2 identical pendula swinging with the same   phase and amplitude

If we place a
spring between
the two pendula,
what does it do
to the frequency when
they are in phase?

What if they
are out of
phase?

The spring stores no energy in the first case, but it does in the second, increasing the
frequency of oscillation.   These two cases are known as the normal modes. 



  

Coupled Cavity Modes

Coupled accelerator cavities also exhibit this type of behavior.   The normal modes
are characterized by the phase difference between each cavity (oscillator) and
its nearest neighbors, and the frequency of each mode.

A set of modes and their frequencies can be represented by a dispersion plot

This is not the same as the mode spectrum for a single cavity.   A chain of
coupled pillbox cavities, for example, will exhibit this type of a mode
spectrum, all operating in the TM010 mode.



  

Impedance

Impedance is a measure of the ratio of the voltage across a circuit element to the
current flowing through the circuit element.   It is a generalization of resistance R.

R =
V
I

This is adequate for DC circuits, but for RF, the voltage and current may not be
in phase.   Impedance includes the in-phase and quadrature phase (900) components.
Impedance is expressed as a complex quantity, a sum of R and X, with X representing
the quadrature component.

Z = R  jX , j = −1

Frequently, in electrical circuit nomenclature, j instead of i is used for the imaginary part.

R is the resistive, or in-phase component
X is the reactive, or quadrature phase component

X L = jL , X C =
1

jC

The impedance of an inductor L and capacitor C are, with the               explicit:j=−1



  

RF Transmission Lines

Transmission lines transmit RF power from one point to another with minimum
loss and external radiation of energy.

Two common types are:

               Coaxial Cable

Waveguide

Coaxial cable (or hardline) is used 
for frequencies up to about 400 MHz 
and down to direct current, and 
waveguide at higher frequencies, 
where the loss is less than coax.



  

Loaded Cavity Q

Our idealized cavity equivalent circuit model
shunts a resistance across a tuned circuit.
Power is fed from a current source, which has
infinite internal impedance.

A real power source has a source impedance.  The impedance of the power source
interacts with the resonant cavity and modifies its bandwidth.

R      C          L

The source transmit power to the cavity, and
the cavity returns power to the source.  

For optimum power transfer, the source impedance
equals the cavity impedance.

Consider a generator with internal impedance Rg

driving a load of impedance RL.  Maximize the power
dissipated in the load, and find that Rg = RL.
(Clearly RL = 0 or infinity dissipates no power, so
RL must be some value in between.)



  

Loaded Cavity Q

An unloaded cavity (no drive loop) has an unloaded Q:   Q0 =
U
P

where U is the stored energy in the cavity and P is the power loss in the cavity.
Coupling to the power source places an additional equivalent shunt resistance
across the cavity.   The Q of the total circuit, QLoaded is 

1
QLoaded

=
1
Q0


1

Qexternal

This is the same equation for resistors in parallel.  Qexternal represents the
source impedance of the power generator.     The most effective power
transfer from the source to the cavity is when Qexternal = Q0

We define a coupling factor b (yes, still another b) as the ratio of the cavity Q
to the external Q.

 =
Q0

Qexternal

b < 1   cavity is undercoupled
b = 1   cavity is critically coupled
b > 1   cavity is overcoupled



  

Cavity-Amplifier Interaction

Does power actually from from the cavity back to the power source?

Yes.  The power in the cavity can do work in the amplifier, dissipating
power in the components of the amplifier, and accelerating the electrons
in the power amplifier tube in the amplifier itself, increasing the plate
dissipation of the power amplifier tube.

If the amplifier is suddenly turned off, stored energy in the cavity will
flow back to the amplifier and be dissipated.



  

Cavity FIlling Time

When power is applied to an empty resonant cavity, the
fields build up in time.   The filling time, tfill, is the time
for the energy stored in the cavity with loaded Q =  Qloaded

to build to 1/e of its saturation point. 

t fill =
Q Loaded



What kind of load to the generator does the cavity present?

When the cavity is at full gradient, the voltage induced in the drive loop
matches the impedance of the generator and transmission line and no power is reflected.

But at t=0, no field is present at the drive loop, and it appears as a short-circuit to the
generator and power is reflected.   

There exists a transient during the filling process that power is reflected from the
cavity until the cavity is filled.   If the cavity impedance is matched to the power source,
the reflected power will asymptotically approach zero.

V = Ḃ A



  

Reflected Power During Cavity Fill

b = 1.   Cavity fills and reflected
power goes to zero

b < 1.  Reflected power never
goes to zero.

b > 1.  At some point the cavity
fields reflect enough power that
the transmission line is matched,
but the cavity continues to fill.

Pforward

Preflected

Pforward

Pforward

Preflected

Preflected



  

The Circulator – A Magic Device

The devices we have studied so far are reciprocal,  that is we can analyze them
with the power going both in the forward or reverse direction consistently.

There is a device for which this does not apply:  the circulator.   It has the following
characteristic:

Power into port 1 goes to port 2

Power into port 2 goes to port 3

Power into port 3 goes to port 1

The circulator relies on the spin of electrons in particular materials aligned
with a magnetic field.   It is a non-reciprocal device.

The circulator can be used to isolate a power source from
a load.  Reflection from the load are shunted to a dummy
load and the power source sees only a matched load.

The circulator is frequently used with power sources such
as klystrons, which don't like mismatched loads.



  

Rebuncher Cavity

We will use 2-D electromagnetics codes such as  SUPEFISH to calculate the 
parameters of a rebuncher cavity.

A rebuncher (or a buncher) cavity is typically a pillbox cavity operating in the TM010

mode with the beam traveling along its axis in the region of maximum longitudinal 
E field.  The cavity frequency is usually the same as the bunch or the linac 
frequency with a precise phase relationship to the bunches passing through it.

The rebuncher phase 
passes through zero at 
the center of the bunch, 
for no net energy change 
of the bunch (otherwise it 
would be an accelerating 
cavity).

This is one-half of the 
SNS rebuncher, showing 
the beam aperture and 
tuning pistons.



  

Rebuncher Cavity Optimization

The rebuncher cavity must resonate at the desired frequency.   Further optimization
is need in the following areas:

Shunt Impedance minimize required RF power
Length to fit into a crowded transport system
Multipactoring to ease conditioning
Peak surface fields to minimize tendency of sparking
Atmospheric pressure to minimize barometric frequency changes
Tuner configuration maximize effectiveness, minimize RF loss
Vacuum configure vacuum ports, ultimate pressure
Thermal control minimize frequency shift
Profile ease of construction, minimize peak fields

and many others


