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Impedance of a Coaxial Transmission Line

A pulse generator with an internal
impedance of R launches a pulse
down an infinitely long coaxial
transmission line.

Even though the transmission line itself has no ohmic resistance, a definite current I 
is measured passing into the line by during the period of the pulse with voltage V.

The impedance of the coaxial line Z0 is defined by   Z0 = V / I.

The impedance of a coaxial transmission line is determined by the ratio of the 
electric field E between the outer and inner conductor, and the induced magnetic
induction H by the current in the conductors.

The surge impedance is, 

where D is the diameter of the outer conductor, and d is the diameter of the inner
conductor.    For 50 ohm air-dielectric, D/d = 2.3.
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Velocity of Propagation in a Coaxial Transmission Line

Typically, a coaxial cable will have a dielectric with relative dielectric constant er

between the inner and outer conductor, where er = 1 for vacuum, and er = 2.29
for a typical polyethylene-insulated cable.

The characteristic impedance of a coaxial cable with a dielectric is then

and the propagation velocity of a wave is,
where c is the speed of light

In free space, the wavelength of a wave with frequency f is

For a polyethylene-insulated coaxial cable, the propagation velocity is
roughly 2/3 the speed of light.
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Reflection from End of a Shorted Transmission Line

Instead of an infinitely long transmission line, consider a finite length that
is terminated by a short circuit.   At the short, the voltage is zero.  

This boundary condition can be satisfied by imagining a negative pulse 
coming from the right, overlapping the forward pulse as it encounters the
short, and continues on to the left toward the generator.

If the time it takes to propagate the pulse down the line is tp, then the inverted
pulse arrives back at the generator at time 2 tp.   

Note that the generator has an internal impedance R.   If R = Z0, the returning
pulse is completely absorbed in the generator, as the transmission line is
terminated in its characteristic impedance Z0.  



  

Reflection from End of an Open Transmission Line

Instead of an infinitely long transmission line, consider a finite length that
is terminated by an open circuit.   At the open, the current is zero.  

This boundary condition can be satisfied by imagining a positive pulse 
coming from the right, overlapping the forward pulse as it encounters the
short, and continues on to the left toward the generator.

Imagine the two pulses overlap as two batteries of identical voltage:

No current flows as the voltage on each
battery is the same.

The pulse from the generator returns in time
2 tp with the same polarity as original.



  

Input Impedance of a Transmission Line with Arbitrary Termination

The impedance at the entrance
of a transmission line of length L
and terminating impedance ZL is

Z i = Z 0

Z L  j Z 0 tan L
Z 0  j Z L tan L

, j=−1

where b is the propagation constant

 =
2 f
c r =

2
 r

There are three special cases, where the end termination ZL is an open or
a short circuit, or a termination resistance equal to the characteristic impedance Z0

of the transmission line itself.

We will introduce the Smith Chart later, which simplifies the calculation of Zi for
an arbitrary terminating impedance.



  

Special Cases of Terminating Impedance

ZL = 0 (short circuit)    Zi = Z0 j tan b L     = 0,          L = l/2,  l, ...
          
                                                                 = infinite,  L = l/4, 3l/4,...

ZL = infinite (open)      Zi = -Z0 j cot b L     = infinite,  L = l/2,  l, ...

                                                                  = 0        ,  L = l/4,  3l/4, ...

ZL = Z0 (matched)      Zi = Z0 

The shorted or open line is always reactive (like a capacitor or inductor), and
reflects the terminating impedance for integrals of a half wavelength, and the
conjugate of the terminating impedance for odd quarter-wavelengths.

The terminated line impedance is independent of the frequency or length of
line (assuming a lossless transmission line).



  

Special Use for a Quarter-Wave Stub

ZL = 0 (short circuit)    Zi = Z0 j tan b L  = infinite,  L = l/4, 3l/4,...

A shorted stub transforms to an infinite impedance at odd multiples of a quarter wavelength.

A quarter-wave stub is a convenient way
of supporting an inner conductor without
an insulator, and accessing the inner
conductor with water cooling, for example.

Stubs are also used in matching a load to
a source by introducing an intentional
reflection.



  

Reflection Coefficient

These terms are used to describe the ratio of the voltage (at one frequency) launched
down a transmission line and the voltage reflected back from the far end by a
mismatched load.

Let V
f
  be the forward voltage launched down the line, and V

r
 the reflected voltage.   

The voltage reflection coefficient is:                                        , 

where  Z
L
 is the load impedance and Z

0
 is the impedance of the transmission line.

If Z
L
 = Z

0
, there is no reflected wave and G

0
 = 0.   The polarity of V

r
 reverses for Z

L
 < Z

0
.

The return loss RL is G
0
 expressed as a logarithmic quantity:

0 ≡
V f

V r

=
Z L − Z 0

Z L  Z 0

RL = −20 log10 ∣ 0∣

RL = -infinite dB for a matched load.



  

At a given frequency f with wavelength

a standing wave will exist on the transmission line (if a reflected wave exists).

The forward and reverse waves will interfere with each other and produce a stationary
pattern of the envelope. 

The Voltage Standing Wave Ratio
is the ratio of the maximum to
the minimum amplitude of the
standing wave

and is usually expressed as a ratio, such as VSWR = 3:1.   In terms of the 
reflection coefficient:

If VSWR = 1,    G
0 
= 0  (no reflection)

 =
v p
f
, v p=

c

r
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Transformation of Arbitrary Impedance Load

Define a normalized impedance:                       Z
L
 and Z

0
 are the load and line impedance. 

The reflection coefficient is                                              where we have expressed the
                                                                                        reflection coefficient as a complex
                                                                                        quantity.  

and b is the propagation constant of a transmission line.

The input impedance of a transmission line with arbitrary terminating impedance is

z L =
Z L
Z 0

0 =
z L − 1
z L  1

= ∣∣ e j  L

 =
2 f
c r =

2 r


Z
¿

= Z 0
1   e−2 j L

1 −  e−2 j L

We will use the Smith Chart to ease the calculation of this complex quantity.



  

Scattering Matrix

In the RF (microwave) domain, it is difficult to probe the voltages and currents in
various parts of a circuit, but easier to measure the voltages at given reference
planes in a circuit.   For a linear circuit, we can define a scattering matrix for the
circuit in terms of the incident and reflected voltages at each of the circuit nodes.

∣V 1
−

V 2
− ∣ = ∣ S11 S 12

S 21 S 22
∣ ∣V 1



V 2
 ∣

where V
i
+ are the voltages incident on port i, V

i
- are the voltages reflected from port i.

S
11

 is the reflection looking into port 1, with all other ports terminated in matched loads.

If V
2
+ = 0, then S

11
 = G, the reflection coefficient.

S
21

 is the voltage transmission coefficient from port 1 to port 2. S 21 =
V 2

−

V 1

, V 2



= 0

S 11 =
Z i − Z 0

Z i  Z 0

, Z i = Z 0
1   e−2j L

1 −  e−2 j L



  

S-Parameter Measurements with Network Analyzer

The network analyzer measures
the scattering coefficients of a
two-port device directly.

One type of display is the Smith Chart.

We will use the Smith Chart to calculate
a single-stub tuner for a mismatched load.



  

The Smith Chart

The Smith Chart 
allows easy 
calculation of the 
transformation of a 
complex load 
impedance through 
an arbitrary length of 
transmission line.

It also allows the 
calculation of the 
admittance  Y = 1/Z 
of an impedance.

The impedance is 
represented by a 
normalized 
impedance z.

Once around the 
circle is a line length 
of l/2.

z =
Z
Z 0



  

Transform a Complex Impedance Through a Transmission Line

Start with an impedance Z
i
 = 27 + 20j ohms

The normalized impedance for a 50 ohm line is

           z
i
 = 0.54 + 0.4 j

Plot this at point z1.  Draw a circle through
this point around the center.   The radius of
the circle is the reflection coefficient G  , where
the radius to the edge is 1.0.  

A transmission line is 0.085 wavelengths
long.   Draw a line through z1 and the center.

The line intersects the wavelength scale
on the outer diameter at 0.07 l.   

Add 0.085 to 0.07 and draw a new line through
the center to 0.155 l.  

Where the new line intersects the circle, read off
the transformed normalized impedance

z
f
 = 1.0 + 0.7 j     or Z

f
 = 50 + 35 j ohms.



  

Transforming an Impedance to an Admittance

It is often useful to find the admittance,
the inverse of a given impedance.

                y  =  1/z

A line drawn through an impedance z
to the opposite side of the red circle 
intersects the value of the admittance.

The Smith chart can be used to find the
inverse of a complex quantity.



  

Special Case:  Shorted Line Stub

A shorted transmission line
stub will have an impedance
of   z = 0.

1/8 l away it will have a
normalized reactance of 0 +1 j.
This is inductive reactance.

(The upper half of the diagram
represents an inductive reactance.)

1/4 l away it will have a 
normalized reactance of infinity.

1/2 l away it again has an 
impedance of  0.

(What happens with an open transmission line segment?)



  

Single-Stub Tuner

A mismatched load (2-50 ohm 
resistors in parallel) is to be 
matched  to a pure 50 ohms
at the generator port.

The length of line L1 will be varied to present
a 50 ohm resistive part of the complex impedance
at the junction.

The remainder of the imaginary part will be removed by adjusting the length of
line L2 to cancel out the imaginary part.

Note that L1 and L2 form a parallel circuit.   The formula for adding impedances
in parallel is

However, the formula for adding admittances is simpler, where y = 1/z

We will use the ability of the Smith chart to calculate admittances and add them.

1
z tot

=
1
z1


1
z 2

y tot = y1  y2



  

Calculation of a Single-Stub Tuner

We will use the Smith Chart to calculate a tuner that matches a 25 ohm resistive
load to a 50 ohm transmission line at 100 MHz.

The normalized impedance z
L
 = Z

L
/50 ohms =  0.5 + 0 j.    We can calculate the

reflection coefficient  G.

 =
z L − 1
z L  1

= 0.333

When this termination is attached to the far end of a 50 ohm transmission line
of length L, the impedance,  looking into the near end, is

Z i = Z 0
1   e

−4 L


1 −  e
− 4 L



Strategy:   first add some line so the real part of the complex impedance is
50 ohms  (normalized z

i
 = 1.0).  Then add a shorted stub, which provides

only reactance, to cancel out the imaginary part of the complex impedance,
leaving a pure 50 ohm resistive load.



  

Step 1:   Transforming to z = 1.0 + 0 j  : get the real part right

The normalized impedance of the 
25 ohm resistive load is z = 0.5 + 0 j.

This is point A on the plot.   Draw a
circle through this point with the center
of the plot as the center.  The radius of
the circle, G = 0.333 is the reflection
coefficient for this load.

The real part of the complex 
impedance = 1.0 on the green circle.

The tricky part:  we are going to add
admittances, the inverse of impedance,
so we want to find the length of L

1
 that

gives the real part of the admittance = 1.0.

That is where the red and green circles intersect 
at point C, and the length of L

1
 is the angle that gives 

the impedance at point B.   We can read off the outer labels that the required length
of L

1
 is about 0.1 wavelengths.

There is still a non-zero imaginary part of the impedance that can be read off point C.



  

Step 2:  Adding a Shorted Stub

The normalized impedance z1 of point B
is 0.67 + 0.471j.  The corresponding 
admittance, found at point C is 1.0 - 0.70 j.

A shorted stub with admittance 0 + 0.7 j 
will be added to this, resulting in an 
admittance of 1.0 (also impedance of 1.0).

The length of the shorted stub is
0.35 l, and its impedance, at point E
is 0 - 1.43 j.   The admittance at point D
is 0 + 0.7 j.   

The sum of the two parallel admittances
is y = (1.0 - 0.7 j) + (0 + 0.7 j) = 1.0 + 0 j,
corresponding to a normalized admittance
of  1.0 + 0 j.  The normalized impedance
z is also 1.0 + 0 j.

This represents a matched 50 ohm load back
to the generator.

 



  

Reference Planes

This problem can be broken
down to calculating the normalized
impedance at 5 reference planes, A-E. 

Plane            z                  y                    S  
11

   A 1.0  + 0.0 j 1.0 + 0.0 j  0.0  + 0.0 j

   B 1.0  + 0.0 j 1.0 + 0.0 j  0.0  + 0.0 j

   C 0.67 + .47 j 1.0 - 0.7 j -0.11 + .31 j

   D 0.5  + 0.0 j 2.0 + 0.0 j -0.33 + 0.0 j

   E 0.0  - 1.43 j 0.0 + 0.7 j  0.34 - 0.94 j    

S 11 =
z − 1
z  1

The S
11

 could be measured by a network analyzer, looking into each reference plane.



  

Single-Stub Tuner Questions

L1 is 0.1 wavelength.   If we can't make it that short,
what could we do?

If L2 is an open stub, what would be its length.  The shorted stub length is 0.35 wavelength.

If the load is 100 ohms, not 25 ohms, what would the line lengths need to be?   What is
the reflection coefficient of a 100 ohm load in a 50 ohm system?

If the shorted stub is placed in series with the center conductor of the
transmission line, rather in parallel with it, how would the lengths of the lines change?



  

Other Tuner Configurations

The major difficulty with the single-stub tuner is that it is not always possible to
have a variable length of transmission line to the load.

Since two variables are involved, a double-stub tuner is an alternate configuration.

L3 and L5 are fixed lengths.

L2 and L4 are adjustable, open or shorted ends

What are the constraints on L3?

The tuning procedure is more complex, requiring more operations with the Smith Chart.

The match is correct only for the design wavelength.  

What happens if a multiple of a half-wave line is added to any of the matching sections? 



  

Single-Stub Tuner Lab Experiment

Calibrate a network analyzer with a 50 ohm terminator at over the range of
100 to 500 MHz and show that S

11
 = 0.

Using a single trombone with a 25 ohm load, measure S11 for various lengths of
the trombone.   You may have to include some sections of coaxial cable to increase
the length to 1 wavelength.   Pay attention to the velocity factor in the trombone and
in any piece of polyethylene coaxial cable you may use.   The load can be two 50-ohm 
terminators on a coaxial “T”.

Using two trombones (variable-length coaxial line segments), assemble a single-stub
tuner with a 25 ohm load and attach to port A of the NA.

Reduce the sweep of the NA to 300 to 350 MHz.   Set the NA to the Smith Chart
display.   Set the marker on the NA to 320 MHz.

Adjust the length of the two trombones so that S11 = 0 (crosses the center of the
Smith chart) at 320 MHz.    Measure the lengths of all the line sections, noting that 
the velocity factor in the trombones is the speed of light, but is 0.66c in the connectors
and the flexible coaxial cables.



  

Analysis

Convert the physical length of the two branches of the single-stub tuner after the
“T” to fractions of a wavelength of 320 MHz.    

Plot the transformed impedance and admittance of each transmission line section,
the line to the 25 ohm load, and the shorted stub, on the Smith chart.   Do the lengths
agree with the lengths calculated in the example above in the writeup?    Why not?

What are the differences?



  

Single-Stub Tuner Simulation and Experiment

The qucs program has a very useful module for 
simulating S-parameters in many system.

Here is the qucs simulation
for this problem, along with
the actual NA display.

To get the right Smith chart
plot, an electrical delay must
be included to establish the
reference plane at the “T”.


