CAVITY FABRICATION

Jean Delayen

Thomas Jefferson National Accelerator Facility
Old Dominion University
Niobium

Niobium is the elemental superconductor with the highest critical temperature and the highest critical field
- Formability like OFHC copper
- Readily available in different grades of purity (RRR > 250)
- Can be further purified by UHV heat treatment or solid state gettering
- High affinity to interstitial impurities like H, C, N, O (in air T < 150°C)
- Joining by electron beam welding
- Metallurgy not so easy
- Hydrogen can readily be absorbed and can lead to Q-degradation in cavities

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>7.2</td>
<td>803</td>
<td></td>
<td>I</td>
<td>Electroplating</td>
</tr>
<tr>
<td>Nb</td>
<td>9.25</td>
<td>1900</td>
<td>1700</td>
<td>II</td>
<td>Deep drawing, film</td>
</tr>
<tr>
<td>Nb₃Sn</td>
<td>18.2</td>
<td>5350</td>
<td>300</td>
<td>II</td>
<td>Film</td>
</tr>
<tr>
<td>MgB₂</td>
<td>39</td>
<td>4290</td>
<td>300</td>
<td>II</td>
<td>Film</td>
</tr>
</tbody>
</table>
Niobium

Quality/purity of niobium used for accelerator application is specified by the RRR ratio

$$RRR = \frac{R(300)}{[R(10) + S \frac{dR_i}{dC_i}]}$$

dR_i/dC_i are the contributions by interstitial impurities such as H, C, N, O and Ta

H: $0.8 \times 10^{-10} \text{ Wcm/at ppm}$
C: $4.3 \times 10^{-10} \text{ Wcm/at ppm}$
N: $5.2 \times 10^{-10} \text{ Wcm/at ppm}$
O: $4.5 \times 10^{-10} \text{ Wcm/at ppm}$
Ta: $0.25 \times 10^{-10} \text{ Wcm/at ppm}$

Typical specifications for impurities (wt ppm)

- H < 2
- C < 10
- N < 10
- O < 10
- Ta < 500

$$RRR > 250$$

Grain size 50 mm

Yield strength > 50 Mpa

Tensile strength > 100 Mpa

Elongation > 30 %

VH < 50

Thermal conductivity at 4.2K

$$\lambda(4.2K) \sim \frac{RRR}{4}$$
Niobium: Electron Beam Melting

- High Purity Niobium (RRR>250) is made by multiple electron beam melting steps under good vacuum, resulting in elimination of volatile impurities.
- There are several companies, which can produce RRR niobium in larger quantities:
 - Wah Chang (USA), Cabot (USA), W.C.Heraeus (Germany), Tokyo Denkai (Japan), Ningxia (China), CBMM (Brasil)

CBMM deposit in Araxa, Brasil

EBM Ingots at CBMM

Electron beam melting furnace in Tokyo Denkai
Electron Beam Melting

1. Gun
2. Electrode
3. Vacuum Chamber
4. Water Cooled Mold
5. Retractable Ingot

[from H.R.S. Moura, “Melting and Purification of Niobium”, p. 147 in Proc. of Int. Symposium Niobium 2001]
Niobium

Industrial Niobium Production - Production Process (Tokyo Denkai Co. Ltd.) -
Niobium

Industrial Niobium Production - Production Process (Tokyo Denkai Co. Ltd.) -
Niobium
Niobium

Insufficient recrystallization, formability and mechanical properties are affected

Fully recrystallized material after appropriate heat treatment (after rolling operation)
Niobium

Post-Purification of niobium in presence of Ti as a solid state getter material

• During the purification process the interstitial impurities (O, N, C) diffuse to the surface and react with the evaporated Ti atoms; Ti has a higher affinity to these impurities than Nb.

Fig. 1 Scheme of the Nb refining by high temperature gettering.
Niobium

- Post-Purification Treatment (G.R. Myneni, Jlab)
Overview of Cavity Fabrication (TESLA)
Overview of Cavity Fabrication (TESLA)

1. Mechanical measurement
2. Cleaning (by ultra sonic [us] cleaning + rinsing)
3. Trimming of iris region and reshaping of cups if needed
4. Cleaning
5. Rf measurement of cups
6. Buffered chemical polishing + Rinsing (for welding of Iris)
7. Welding of Iris
8. Welding of stiffening rings
9. Mechanical measurement of dumb-bells
10. Reshaping of dumb bell if needed
11. Cleaning
12. Rf measurement of dumb-bell
13. Trimming of dumb-bells (Equator regions)
14. Cleaning
15. Intermediate chemical etching (BCP /20- 40 µm) + Rinsing
16. Visual Inspection of the inner surface of the dumb-bell
 local grinding if needed + (second chemical treatment + inspection)

Dumb-bell ready for cavity
Overview of Cavity Fabrication (TESLA)
Overview of Cavity Fabrication (TESLA)
Overview of Cavity Fabrication (TESLA)
Overview of Cavity Fabrication (KEK)

Fabrication of ICHIRO Cavity in KEK(1)

Pressing Nb plate

56 half-cells were pressed in a few hours

21 February 2005

After trimming

Trimming

After pressing
Overview of Cavity Fabrication (KEK)

Fabrication of ICHIRO Cavity in KEK(2)

Electron Beam Welding (EBW)
In KUROKI corporation

Beam

Dumbbell

1 April 2005

Dumbbell with stiffener-ring after EBW.

16 April 2005

Pull and extend dumbbells to insert stiffener-ring.
=> EBW (dumbbell + ring)

Insert stiffener-ring into the iris part of dumbbell.
Overview of Cavity Fabrication (KEK)

Fabrication of ICHIRO Cavity in KEK(4)

- EBW of dumbbells
- EBW of end-beam-pipe
- End-beam-pipes with HOM and flanges

Four 9-cell ICHIRO high-gradient LL Cavities were successfully delivered to KEK! (4 July 2005)
Overview of Cavity Fabrication (KEK)

Dimensional measurements

Length and straightness of the cavities were measured by 3D-measurement machine.

<table>
<thead>
<tr>
<th></th>
<th>EBW shrinkage</th>
</tr>
</thead>
<tbody>
<tr>
<td>iris</td>
<td>0.148±0.044 mm</td>
</tr>
<tr>
<td>equator</td>
<td>0.424±0.125 mm</td>
</tr>
</tbody>
</table>

Dimensional deviation of length (only 9-cell part: 1038.5 mm)
- 10 mm (1st 9-cell ICHIRO cavity)
- 0.7 mm (2nd 9-cell ICHIRO cavity)
- 0.1 mm (3rd 9-cell ICHIRO cavity)
Overview of Cavity Fabrication (KEK)

Field flatness after pre-tuning

- Mode frequency 1298.774 MHz
- Mode frequency 1298.547 MHz

Field flatness = 0.1 % (as delivered to KEK)
Field flatness = 98 % (after pre-tuning)

<table>
<thead>
<tr>
<th>Cavity</th>
<th>Field flatness (min/max) as delivered / after pre-tuning</th>
<th>Freq. target 1298.141 (MHz) @R.T. as delivered / after pre-tuning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>0.1% / 98%</td>
<td>1298.774 / 1298.547</td>
</tr>
<tr>
<td>2nd</td>
<td>57.6% / Not yet</td>
<td>1301.447 / Not yet</td>
</tr>
<tr>
<td>3rd</td>
<td>31.5% / Not yet</td>
<td>1301.577 / Not yet</td>
</tr>
<tr>
<td>4th</td>
<td>51.5% / Not yet</td>
<td>1301.696 / Not yet</td>
</tr>
</tbody>
</table>

Cell-to-cell coupling is as small as 1.6%, but no problem in pre-tuning.
Overview of Cavity Fabrication (JLab)

Tack-Welding: 4 tacks, focused beam
Voltage: 50 kV
Current: 15 mA
Rotational Speed: 20 inches/min
Distance of gun to work: 6"
Final weld Current: 33 mA
Rotational speed: 18"/min
Focussing: elliptical pattern
Overview of Cavity Fabrication (JLab)
Fabrication of Cups

- Deep drawing or spinning
- Measurement of contour
- Better: measurement of frequency
- Trimming length at iris and equator plane
 - Consider welding shrinkage
- Slight chemical cleaning for welding
Fabrication of Cups

A

B

C

D

E

F
Electron Beam Welding

- Welding under good vacuum, 10^{-5} range
- Broad welding seam
 - Operate with defocussed beam
 - Smooth underbead
- Overlap at end of welding to avoid accumulation of impurities
- Wait to cool down before opening chamber
Tuning (Electrical)

Elongation A_e in the magnetic field region

Figure 3: Trimming of the equator to adjust the elongation at the equator

Frequency measurement of half cell

Frequency measurement of dumbbell
Field Flatness Tuning

H. Padamsee et al; “RF Superconductivity for Accelerators”

Set-up for field profile measurements: a metallic needle is perturbing the rf fields while it is pulled through the cavity along its axis; the stored energy in each cell is recorded.
Tuning (Mechanical)

Tuning system

Stretch $\Delta f > 0$

Squeeze $\Delta f < 0$
Tuning (Mechanical)

Computerized tuning machine at DESY

- Equalizing stored energy in each cell by squeezing or pulling
- Straightening of cavity
Tuning code (Chen Yinghua, J. Sekutowicz, Wei Yixiang, DESY M-89-11)

• Frequency and field profile measurement of all the 6 modes of the TM\textsubscript{010} pass-band

• Preparing an input file with frequency and field amplitudes at the center of the cells for each mode

• Running the tuning code developed by J. Sekutowicz based on a lumped-circuit model where only the coupling between neighboring cells is considered

• Obtaining the Δf to be applied to each cell to tune the cavity at the frequency requested
Tuning: Example 5-cell TRASCO Cavity

As manufactured

Tuned
Cavity Inspection
Cavity Inspection
External Chemistry
Alternative Fabrication Techniques

Besides the “standard” cavity fabrication of producing niobium half cells and electron beam weld them into multi-cell cavities there exist alternative methods:

- Spinning of multi-cells
- Hydroforming of multi-cells
- Use of composite material NbCu
- Thin film coating of Cu cavities
Hydroforming

Hydro forming (W. Singer, DESY)
Hydroforming of a two-cell structure - H. Kaiser, W. Singer et al.
Hydroforming
Spinning

Spinning (V. Palmieri, INFN Legnaro)
Spinning
Flow forming over a cylindrical mandrel with three work rollers allows to produce long and very precise tubes from thick walled cylindrical part. After optimization of several parameters shiny Nb surface and small wall thickness variations (less then +/-0,1 mm) have been achieved.
CBMM Niobium: large grain and single crystal

RRR value: ~300
Ta content: ~500 ppm
Single crystal cavities

![Graph showing the relationship between E_{acc} (MV/m) and σ (1E+11) with points indicating Scaled Low Loss shape and Scaled High Gradient shape.]

- $T = 2$ K
- $B_{p,\text{max}} = 160 \text{ mT}$
- $B_{p,\text{max}} = 150 \text{ mT}$
Single crystal cavity

Single Crystal DESY Cavity, Heraeus Niobium
112 micron bcp 1:1:2

- T=1.99K, 6hrs at 120C baked
- T=1.8K, 6 hrs at 120C baked
- * T = 2K, before baking*

Q_0 vs. E_{acc} [MV/m]

Quench @ 37.5 MV/m

Q - drop
Potential Benefits of Single Crystal Nb

- Reduced cost
- Comparable performance of fine grain niobium
- Very smooth surfaces with BCP, no EP necessary
- Better cleaning (FE reduction?)
- Elimination of Q-drop with short baking times
- Less material QA (eddy current/squid scanning)
- Possibly very low residual resistance
 - Lower losses
 - Lower operating temperature
- Higher thermal stability (phonon peak)
- Good or better mechanical performance
Nb/Cu clad Material

Advantages

• cost effective: allows saving a lot of Nb (ca. 4 mm cavity wall has only ca. 1 mm of Nb and 3 mm Cu). Especially significant for large projects like ILC

• bulk Nb microstructure and properties (the competing sputtering technique does not have such advantages)

• the treatment of the bulk Nb BCP, EP, annealing at 800°C, bake out at 150°C, HPR, HPP can be applied (excluding only post purification at 1400°C).

• high thermal conductivity of Cu helps for thermal stabilization

• stiffening against Lorentz - force detuning and microphonics can be easily done by increasing of the thickness of Cu layer.

• fabrication by seamless technique allows elimination of the critical for the performance welds especially on equator

W. Singer SRF 2005
Nb/Cu clad Material

NbCu single cell cavity 1NC2 produced at DESY by hydroforming from explosively bonded tube. Preparation and HF tests at Jeff. Lab: 180 µm BCP, annealing at 800°C, baking at 140°C for 30 hours, HPR (P. Kneisel).

40 MV/m without EP

W. Singer SRF 2005

NbCu cavities hydroformed from explosively bonded tubes at DESY.

Difficult to get reproducibly high bonding quality. Hot bonding fabrication procedure of NbCu tubes seems to be more promising.
Nb/Cu clad Material

- Hot bonded NbCu tubes

Fabrication principle of sandwiched hot rolled Cu-Nb-Cu tube (KEK and Nippon Steel Co.)

Fabrication principle of sandwiched coextruded Cu-Nb-Cu tube (KEK)

W. Singer SRF 2005

Hot roll bonded Cu-Nb-Cu tube produced at Nippon Steel Co.
Nb/Cu clad Material

Nb/Cu Clad Seamless Tubes and Cutting
Nb/Cu clad Material

Problems

- Possibility of leaky welds because of Cu contamination
- Nb/Cu cavities still quench, resulting in Q-degradations
- Cooldown needs to be very uniform because of thermo – currents
- Cooldown of cryomodules would need modification
- Cracks sometimes appear in iris region during fabrication
- No industrialization efforts yet
Thin Niobium Films

Developed in CERN for LEP II Superconducting RF cavities

\[f = 350 \text{ MHz} \quad \rightarrow \quad \text{big cavity (diameter:780mm)} \quad \rightarrow \quad \text{Reduce Nb material for cost down} \]

Copper half cell for LEP-II SC cavity

350MHz 4-cell Nb bulk cavity (CERN)
Niobium on Copper Cavities
Fabrication

FREON INPUT
FREON OUTPUT
CERAMIC INSULATOR
ELECTROMAGNETS
CATHODE AND NIOBIUM LINER
MANIFOLD WITH:
PUMPING SYSTEM
GAS INJECTION
GAS ANALYSER

Jefferson Lab
Thomas Jefferson National Accelerator Facility
Sputtering parameters for 1.5 GHz cavities

- Discharge current stabilized at 3 A.
- Sputter gas pressure of 1.5×10^{-3} mbar, corresponding to ~ 360 V.
- Coating temperature is 150 °C.
- Thickness: 1.5μm

Film characteristics (same as for LEP):

- RRR: 11.5 ± 0.1
- Argon content: 435 ± 70 ppm
- Grain size: 110 ± 20 nm
- Tc: 9.51 ± 0.01 K
Surface Structure of Nb/Cu

<table>
<thead>
<tr>
<th>SEM images</th>
<th>AFM images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thin Niobium Films

Niobium Film Coated Cavities - Application for 1300 MHz cavities -

Q-slope is a problem for the high gradient application.
Performance of LEP Cavities

Q [1E9] vs Ea [MV/m] of accepted Nb/Cu cavities from Industry (vertical test)
Some results at high field (1.5 GHz cavities)

Electropolished cavities

Coatings performed using krypton

Rinsed with upgraded HPWR installation

Max RF power: 100W

Small cryostat: 60l of liquid He
Cu Plasma-Sprayed on Nb
Experiences on cavity fabrication

Deep drawing:
1. Reproducibility depends on tool design and tool material
 → specification – investigation in tooling
2. Dependency on Nb supplier found
3. Different shape from ingot to ingot found (Hardness / grain size)
 → Better quality control + specification → reproducibility

Measurements:
1. Rf measurement of cups / dumb bells → Time consuming
2. Mechanical measurements of sub units → Time consuming
 (F part HOM tube / flanges /dumb-bell 3 D measurement complex
 → combination of mechanical and rf measurement possible ?
 (3 D imaging of units)

Fabrication:
1. Sequences need to be adopted to the company hardware
2. Companies need to be trained an stay trained
 → learning curve to stable production
3. Control on subcontractors
4. Dependency on major products of company → training of personal