## **Bead-Pulling Measurement** (Multi-cell Cavity Field Flatness)

#### Prepared by Sung-Woo Lee



Managed by UT-Battelle for the Department of Energy

### Outline

- Introduction
- Bead-Pulling Measurement
- Perturbation Theory
- Methods
- Tuning Mechanism
- Examples
- Conclusion



### Introduction

- Accelerating mode of multi-cell cavities is πmode.
- Cells operate at same frequency with out-ofphase from neighboring cell.
- Frequency deviation of each cell must be quantified.
- Mechanical tuning required.



### **Bead-Pulling Measurement**

- In manufacturing or tuning multi-cell cavities it is required to investigate the field profile inside cavities.
- The field can be "sampled" by introducing a perturbing object and measuring the change in resonant frequency.
- The object must be so small that the field do not vary significantly over its largest linear dimension: it is a perturbation method.
- Phase deviation is much easier to observe than frequency change especially for small perturbation.



### **Perturbation Theory**

Finding approximate solution starting from the exact solution adding "small" deviation.





Change of the field profile by very small bead (stored energy change) produces the frequency deviation.

$$\frac{\Delta\omega}{\omega_0} = \frac{\Delta U}{U} = -\frac{\pi r^3}{U} \left[ \varepsilon_0 \left( \frac{\varepsilon_r - 1}{\varepsilon_r + 2} \right) E_0^2 + \mu_0 \left( \frac{\mu_r - 1}{\mu_r + 2} \right) H_0^2 \right]$$



### Bead Pull Setup



The shape of the bead will distort the field in the vicinity of the bead so a geometrical form factor must be used.

Due to the H field is zero on the axis of the cavity where the small bead moving,  $\pi a^3 \Gamma$ 

$$\frac{\Delta\omega}{\omega_o} = -\frac{\pi a^3}{U} \left[ \varepsilon_o E_b^2 + \frac{\mu_o}{2} H_b^2 \right]$$





### Measurement Setup

Bead pull setup for phase shift measurement





### Phase Measurement Result

### (5 measurements)

#### Procedure

- Pick and set the desired mode  $(\pi)$  as CW frequency
- Calculated Q factor
- Start bead pulling motor at constant speed
- Sample phase data and record
- Translate phase into frequency shift

$$\frac{f_p - f_0}{f_0} = \frac{\tan \phi(f_0)}{2Q}$$
(f\_p: perturbed frequency)





### Frequency Shift data

## (2 measurements)

Bead Pull Measurement (MBp4)



## Direct Frequency Measurement



# Direct Frequency Measurement (using PLL system)

#### Phase Lock Loop





### Multi-cell Cavity Tuning

#### Individual cell tuning





### Manual Tuning Example

#### Individual cell manual tuning (FermiLab)



3rd Harmonic Module mini-Review. T. Khabiboulline. 11.08.2005.



# Automatic Tuning Example I (Bead-pull setup integrated)



PC-controlled bead pull measuring device





Photograph of the cavity tuning machine with integrated bead pull measuring device.

3D-CAD-Model of the tuning machine Used to push and pull each cell to the right frequencies.



# Automatic Tuning Example II (Bead-pull setup integrated)



Cavity installed on the tuning bench





### Conclusion

- Multi-cell(N) accelerating cavities have N degenerated modes. (π–mode is desired)
- The modes split when the coupling (k) increases and/or N deceases.
- Each cell has its own resonant frequency. (need to be tuned)
- Frequency deviation can be monitored by beadpulling based on perturbation theory.
- Phase measurement can be effectively used under small perturbation.
- Frequency correction can be done by mechanical tuning(squeezing/extending) procedure.

