Input Power Coupler Development
for Low-Beta Superconducting Cavities

Jon Wlodarczak
USPAS
Annapolis, Maryland, June 2008
Overview

- Background
 - Introduction
 - Types
 - Windows
- Project motivation
 - Application
- Methodology
 - Design
 - Conditioning
 - Testing

Cornell 500 MHz storage ring SRF cavity
Introduction

• Necessary for (nearly) all cavities
 – Fundamental power couplers (FPCs) transfer RF power from the generation system to the cavity, and thus to the beam
 – HOM couplers remove energy from cavity
• Commercial couplers are quite expensive
 – High power
 • 805 MHz medium beta elliptical cavities were 10 kW CW and $30,000 each.
• Failure is expensive
• Challenging design
 – Multi-disciplinary design
 – Trade-offs
Electrical Function

- Couple power from amplifiers to cavity
- Designed for CW or pulsed operation
- Impedance match to source
Mechanical Function

- Vacuum feed through
 - Separates cavity vacuum from atmosphere
 - Seals cavity from potential contamination

- Thermal isolation
 - Separates room temperature from cryogenics
 - Withstand repeated thermal cycles
 - Contraction rates
Coupler Types: Coaxial

- Transmission line
 - Coupling
 - Electrical
 - Probe
 - Magnetic
 - Loop
 - Impedance
 \[
 Z_o = \frac{\eta_o}{2\pi} \ln \left(\frac{r_{oc}}{r_{ic}} \right)
 \]
 - Ratio for 50 Ω
 - \(r_{oc} = 2.3 \ r_{ic} \)
Coupler Types: Waveguide

- Waveguide
 - High power
 - Large size
 - TE_{01}

$$f_c = \frac{\eta}{2b\sqrt{\mu\varepsilon}}$$

- width \approx 1.9 meters
 @ 80.5 MHz
Power Coupler Comparison

- **Waveguide**
 - Large
 - Simple
 - Larger heat load
 - Complex variability
 - High pumping speed
 - Fixed frequencies

- **Coaxial**
 - Compact
 - Complex
 - Small heat load
 - Less complex variability
 - Low pumping speed
 - All frequencies
Window Types

- Warm window
 - Outside module
 - Further from cavity

- Cold window
 - Inside module
 - Increase thermal stress
 - Vacuum on 2 sides
 - Seals cavity before module assembly

- Planar
 - Waveguide

- Coaxial
 - Disc
 - Conical
 - Cylindrical

Coaxial disc, planar and cylindrical windows
Potential Problems

- Barrier faults
 - Cracked windows
 - Mechanical
 - Thermal
 - Bad brazement
 - Leaky bellows
 - Flange seal

- Transmission faults
 - Multipacting
 - Heating
 - Arcing
 - Ceramic metallization
 - Gas condensation
 - Q_{ext} shift
 - Fixed couplers
Motivation

- Create an affordable power coupler for the QWR that is robust and capable of handling the power requirements.
Application: QWR Cavities

\[\beta_{opt} = 0.041 \quad 80.5 \text{ MHz} \]
\[\beta_{opt} = 0.085 \quad 80.5 \text{ MHz} \]
\[\beta_{opt} = 0.16 \quad 161 \text{ MHz} \]
\[\beta_{opt} = 0.285 \quad 322 \text{ MHz} \]
\[\beta_{opt} = 0.425 \quad 322 \text{ MHz} \]
More on QWR Cavities

<table>
<thead>
<tr>
<th>Type</th>
<th>$\lambda/4$</th>
<th>$\lambda/4$</th>
<th>$\lambda/4$</th>
<th>$\lambda/2$</th>
<th>$\lambda/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{opt}</td>
<td>0.041</td>
<td>0.085</td>
<td>0.160</td>
<td>0.285</td>
<td>0.425</td>
</tr>
<tr>
<td>V_a (MV)</td>
<td>0.46</td>
<td>1.18</td>
<td>1.04</td>
<td>1.58</td>
<td>2.51</td>
</tr>
<tr>
<td>I_{beam} (pµA)</td>
<td>10.6</td>
<td>10.6</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
</tr>
<tr>
<td>$<Q>$</td>
<td>28</td>
<td>28</td>
<td>73</td>
<td>73</td>
<td>89</td>
</tr>
<tr>
<td>P_{beam} (W)</td>
<td>118</td>
<td>350</td>
<td>510</td>
<td>784</td>
<td>1610</td>
</tr>
<tr>
<td>Q_{beam}</td>
<td>4.2×10^6</td>
<td>9.6×10^6</td>
<td>5.6×10^6</td>
<td>1.6×10^7</td>
<td>1.9×10^7</td>
</tr>
<tr>
<td>P_g (W)</td>
<td>236</td>
<td>700</td>
<td>1020</td>
<td>1570</td>
<td>3210</td>
</tr>
<tr>
<td>Q_L</td>
<td>1.4×10^6</td>
<td>3.2×10^6</td>
<td>1.9×10^6</td>
<td>5.3×10^6</td>
<td>6.2×10^6</td>
</tr>
<tr>
<td>Control bandwidth $\Delta_{allowed}$ (Hz)</td>
<td>54</td>
<td>23</td>
<td>81</td>
<td>56</td>
<td>47</td>
</tr>
<tr>
<td>$<\phi>$ (deg)</td>
<td>-30</td>
<td>-30</td>
<td>-35</td>
<td>-35</td>
<td>-30</td>
</tr>
</tbody>
</table>
Design Methodology: Mechanical

- **Size**
 - 3-D model
 - Fitment
- **Assembly**
- **Thermal analysis**
 - Vacuum side O.C. Plating
- **Material specification**
Design Methodology: Electrical

- **Coupler type**
 - Cavity placement
- **Modeling**
 - Fields
 - S-parameters
 - Reflection
 - Transmission
Electrical Parameter Measurements

- Measuring
 - S-parameters
 - Reflection
 - Transmission
- Coupling
 - $Q_{\text{ext}} = 2 \times 10^6$
Prototype

- Ultrasonic Cleaning
 - Micro-90 solution
 - 20 minutes
 - Ultra pure water
 - 40 minute rinse
- Assembly
- Class 100 Clean room
Prototype cont.

- Bake-out
 - 200° C
 - 36 hours
Bake-Out: Temperature & Pressure
Bake-Out RGA Readings

Before

2 hrs. after

2 days after
Conditioning Assembly

- Two couplers at a time
 - Shorted
Conditioning Stand

- Standing-wave
 \[P_{sw} = P_{in} + 20 \text{ dB} \]
Conditioning

- Sliding shorts
 - Full wave
 - 3.7 meters
 - Moved in 3” increments
Conditioning Sweep
RGA Before, During, and After

During conditioning
@ 63” (near window)
Pressure ≈ 8.5x10^{-6} Torr

After bake-out
Pressure ≈ 1.4x10^{-8} Torr

After conditioning
Pressure ≈ 9.4x10^{-9} Torr
Conditioning Issues

- Over-heating
 - Possibly due to non-plated O.C.
 - Melted solder
 - Vacuum breach
 - RGA failure
 - Turbo pump destroyed

- Replaced soft solder (m.p. = 249°C) with silver braze (m.p. = 635°C)
Future Work

- New flange design
 - Thicker tubing on diagnostic ports
- Implement IR pick-up
- Determine how much reconditioning is necessary after “sitting” in clean room
- Determine if canted springs are necessary
 - Simplify design and assembly
 - Better RF match at window
- Test couplers on new prototype QWR
- Measure copper plating thickness
Conclusions

- Conditioning process drove out residual contaminants from window.
 - 10 kW standing-wave
 - Slow, approx. 8 days
- Window able to withstand non-ideal operation
 - Solder failure
 - Mechanical stress
- Assembly capable of operating at 1 kW CW for 7 days.
- Comparatively affordable, prototype cost was about $6,000 each
Resources

- J. Delayen, Couplers, USPAS, Maryland, June 2008
- B. Rusnak, “RF Coupler and HOM Coupler Tutorial,” 11th Workshop on RF Superconductivity, 2003
- National Superconducting Cyclotron Laboratory, “Isotope Science Facility at Michigan State University: Upgrade of the NSCL rare isotope research capabilities,” NSCL, East Lansing, MI, 2006
Questions?
Table 5.10: Electromagnetic and cryogenic parameters.

<table>
<thead>
<tr>
<th>Type</th>
<th>$\lambda/4$</th>
<th>$\lambda/4$</th>
<th>$\lambda/4$</th>
<th>$\lambda/2$</th>
<th>$\lambda/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{opt}</td>
<td>0.041</td>
<td>0.085</td>
<td>0.160</td>
<td>0.285</td>
<td>0.425</td>
</tr>
<tr>
<td>f (MHz)</td>
<td>80.5</td>
<td>80.5</td>
<td>161</td>
<td>322</td>
<td>322</td>
</tr>
<tr>
<td>T (K)</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>R/Q (Ω)</td>
<td>424</td>
<td>416</td>
<td>381</td>
<td>199</td>
<td>210</td>
</tr>
<tr>
<td>G (Ω)</td>
<td>15.7</td>
<td>19.0</td>
<td>35.0</td>
<td>61.0</td>
<td>86</td>
</tr>
<tr>
<td>$G\cdot R/Q$ (kΩ²)</td>
<td>6.66</td>
<td>7.90</td>
<td>13.3</td>
<td>12.1</td>
<td>18.1</td>
</tr>
<tr>
<td>E_g (MV/m)</td>
<td>16.5</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>V_s (MV)</td>
<td>0.46</td>
<td>1.18</td>
<td>1.04</td>
<td>1.58</td>
<td>2.51</td>
</tr>
<tr>
<td>J (A/m²)</td>
<td>0.99</td>
<td>6.69</td>
<td>2.81</td>
<td>6.19</td>
<td>14.93</td>
</tr>
<tr>
<td>R_{c} (nΩ)</td>
<td>2.5</td>
<td>2.5</td>
<td>10.1</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>R_{min} (nΩ)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Q_{max}</td>
<td>2.1×10^9</td>
<td>2.5×10^9</td>
<td>2.3×10^9</td>
<td>1.1×10^{10}</td>
<td>1.5×10^{10}</td>
</tr>
<tr>
<td>$Q_{design} = Q_0$</td>
<td>5×10^8</td>
<td>5×10^8</td>
<td>5×10^8</td>
<td>5×10^8</td>
<td>7×10^8</td>
</tr>
<tr>
<td>P_{design} (W/cav) = P_0</td>
<td>1.0</td>
<td>6.7</td>
<td>5.7</td>
<td>2.5</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Table 5.12: Beam loading requirements by cavity type for uranium at 400 kW and 200 MeV/u. (I_{beam} denotes beam current, $<q>$ denotes average charge state, $<\phi>$ denotes average synchronous phase.)

<table>
<thead>
<tr>
<th>Type</th>
<th>$\lambda/4$</th>
<th>$\lambda/4$</th>
<th>$\lambda/4$</th>
<th>$\lambda/2$</th>
<th>$\lambda/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{opt}</td>
<td>0.041</td>
<td>0.085</td>
<td>0.160</td>
<td>0.285</td>
<td>0.425</td>
</tr>
<tr>
<td>V_s (MV)</td>
<td>0.46</td>
<td>1.18</td>
<td>1.04</td>
<td>1.58</td>
<td>2.51</td>
</tr>
<tr>
<td>I_{beam} (µA)</td>
<td>10.6</td>
<td>10.6</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
</tr>
<tr>
<td>$<Q>$</td>
<td>28</td>
<td>28</td>
<td>73</td>
<td>73</td>
<td>89</td>
</tr>
<tr>
<td>P_{beam} (W)</td>
<td>118</td>
<td>350</td>
<td>510</td>
<td>784</td>
<td>1610</td>
</tr>
<tr>
<td>Q_{beam}</td>
<td>4.2×10^5</td>
<td>9.6×10^5</td>
<td>5.6×10^6</td>
<td>1.6×10^7</td>
<td>1.9×10^7</td>
</tr>
<tr>
<td>P_{g} (W)</td>
<td>236</td>
<td>700</td>
<td>1020</td>
<td>1570</td>
<td>3210</td>
</tr>
<tr>
<td>Q_{g}</td>
<td>1.4×10^6</td>
<td>3.2×10^6</td>
<td>1.9×10^7</td>
<td>5.3×10^8</td>
<td>6.2×10^8</td>
</tr>
<tr>
<td>Control bandwidth</td>
<td>54</td>
<td>23</td>
<td>81</td>
<td>56</td>
<td>47</td>
</tr>
<tr>
<td>$<\phi>$ (deg)</td>
<td>-30</td>
<td>-30</td>
<td>-35</td>
<td>-35</td>
<td>-30</td>
</tr>
</tbody>
</table>
\[\beta_1 = \frac{1 - 10^{(S_{11}/20)}}{1 + 10^{(S_{11}/20)}} \]

\[\beta_2 = \frac{10^{(S_{21}/10)}}{1 - 10^{(S_{11}/10)} - 10^{(S_{21}/10)}} \]

\[Q_o = (1 + \beta_1 + \beta_2) \times Q_L \]

\[Q_{ext2} = \frac{Q_o}{\beta_2} \]

\[BW = \frac{f_r}{Q_{ext2}} \]

\[Q_L, S_{11}, S_{21} \text{ are measured values} \]