Thin Film Applications for SRF

Final Presentation, USPAS, 6/26/2008 Daniel Bowring (TJNAF, UVA)

Why Thin Films?

- Thermal conductivity of, e.g., Cu is much larger than Nb - helps prevent hot spot quenches.
- Cheaper to use less Nb
- Possibility of other materials (MgB₂, NbN)
- Improved shielding from Earth's **B**-field
- Improved BCS surface resistance

R. Russo. Meas. Sci. Technol. **18** (2007) 2299-2313 S. Calatroni. Proc. PAC 2005. H. Wang, et al. Proc. PAC 2005.

Overview

- Some history
- Where is thin film SRF now?
- How thin/thick is too thin/thick?
- Q-slope and possible sources

LEP II: 1998-2000

- industry produced 272 Nb/Cu cavities
- 352 MHz (big!) for 200 GeV (CM)
- avg. gradient 6-10 MV/m, depending
- magnetron sputtering

H. Padamsee. Proc. PAC 2001. R. Russo. Meas. Sci. Techol. **18** (2007) 2299-2313.

D. Bloess. Proc. Intl. Workshop on Thin Films 2006.

"High field" Q-Slope

Measured Q₀ of LEP 2 Nb/Cu Cavities

R. Russo. Meas. Sci. Technol. 18 (2007) 2299-2313.

A quote from Enzo

"... experimentalists will never benefit simultaneously [from] extremely high Q values and high fields. ... Niobium sputtered cavities will never be usable at high accelerating gradients, unless Residual Resistivity Ratio values of at least 100 [are] achieved in the niobium film growth."

V. Palmieri. Proc. of SRF 2005.

Thin Film SRF Today

Machine	What/ Where	Approx. Gradient	Frequency		
LHC	CERN	5 MV/m	400 MHz		
SOLEIL	StAubin, France	5 MV/m	352.2 MHz		
ALPI	Legnaro, Italy	4-6 MV/m	80 MHz		

S. Bauer et al. Proc SRF 1999. J. Jacob et al. Proc. EPAC 2002. G. Bisoffi et al. Proc. SRF 2007.

Qovs. Gradient, LHC

S. Bauer et al. Proc SRF 1999.

MgB₂

- First published in 2001
- $T_c = 39 \text{ K}$
- Theoretical max. gradient ~ 77 MV/m
- $R_{BCS}(4 \text{ K}, 500 \text{ MHz}) = 2.5 \text{ n}\Omega$

E.W. Collings, et al. Supercond. Sci. Technol. 17 (2004) S595-S601.

Coating SRF Cavity with a Two-Step Process

Coating cavity with B layer at ~400-500°C using CVD

How thin is too thin?

- Absolute lower limit is set by the London penetration depth. For Nb, this is ~36 nm.
- Practical lower limit set by substrate avg.
 surface roughness + concentration gradient.
- fcc to bcc transition

R.Russo. Meas. Sci. Technol. **18** (2007) 2299-2313.

How thin is thin enough?

- LEP 2 experience suggests excessive film stresses at >10µm, causing problems during HPR.
- These limits likely dependent on deposition technique. YMMV.
- Useful range: 2 < d <10 μm.

Possible Sources of Q-drop

- DISCLAIMER: Strong disagreement about role of grain boundaries in film quality.
- I will discuss (not endorse!) the findings/ theories of various groups.
- Evidently lots of interesting work to be done here.

Role of Mean Free Path

Dependence of R_{BCS} on mean free path C. Benvenuti et al. *Physica C* **316** (1999) 153-188.

Trapped Magnetic Flux

- Flux vortices "pinned" by lattice defects.
- As T drops below T_c this pinned flux is trapped.
- Simple model for DC fields assumes all flux trapped.

Trapped Flux, cont'd.

- G. Ciovati et al. Proc. SRF 2005.
- Thermometry measurements map "hot spots" in cavity due to trapped flux.
- Flux oscillates at pinning site, gives resistive losses.
- Authors: Q-drop might come from vortex penetration due to "reduced surface barrier" (lattice defects)

Trapped Flux, cont'd.

- A. Romanenko et al. *Proc. SRF 2007*.
- Comparative thermometry studies of large and small grain cavities suggest crystal defects play a role in flux pinning.
- This experiment discounts role of field enhancement at grain boundaries, suboxide layer.
- But...

Theories / Experiments Co

B.Visentin. Proc. Int'l Workshop on Thin Films. 2006.

N+

B. Visentin - SRF (2003) – updated at Argonne Work

$\overline{\ }$	Q-Slope Fit	Q-Slope before baking (EP = BCP)	Q-Slope Improvem ^t after baking	Q-Slope after baking (EP < BCP)	No change after 4 y. air exposure	Exceptional Results (BCP)	Q-Slope unchanged after HF chemistry	TE ₀₁₁ Q-slope after baking	Quench EP > BCP	BCP Quench unchanged after baking	Argum ^t Validity	Fund ^{al} Di:agreem ^t Exper.≠ Theory
Magnetic Field Enhancem ^t	Y simulat. code	$B_{a} \neq B_{C2}^{S} \neq$	Y Bc₂ ^s ↑	\mathbf{Y} lower β_m	-	$\mathop{N}_{\text{high}\beta_m}$	-	-	$\mathop{\mathbf{Y}}_{\substack{\text{lower}\\\beta_m}}$	N Bc2 ^s ↑	Y	D ₁
Interface Tunnel Exchange	$\mathbf{Y}_{\mathbf{E}^{\mathtt{S}}}$	Ν β* ≠	Y Nb2O5-y↓	Y Iower β*	N Nb2O5-y ↑	$\sum_{high \ \beta*}$	new Nb ₂ O _{5-y}	mprov	-	-	Y	D ₂
Thermal Feedback	Y parabolic	Y ≅ thermal properties	Y _{RBCS} ↓ R _{res} ↑	N ≅ therm. propties	-	-	-	-	-	-	N C coeff. ^t	-
Magnetic Field Dependence of ∆	$\mathbf{Y}_{\mathrm{expon}^{\mathrm{tial}}}$	N Bc₂ ^s ≠	Y Bc₂ ^s ↑	$\mathop{\mathbf{Y}}_{\stackrel{higher}{B_{C2}}}$	-	-	-	-	-	-	tin film	D ₁
Segregation of Impurities	?	N segregation ≠	N only O diffusion	Y surface ≠	-	y good cleaning	N chemistry	-	-	-	Y	-
Bad S.C. Layer Interstitial Oxygen Nb ₄₋₆ O	?	Y NC layer	Y O diffusion	Ν	N interstitial re-appears	-	new bad layer	-	$\mathop{Y}_{\stackrel{higher}{B_{C2}}}$	N Bc1↓	Y	D ₁

Y / N = theory in **agreement** / **contradiction** with experimental observation / = undisputable disagreement with experiment

V. Palmieri. Proc. SRF 2005

- Paper unique: presents close approximation of an outright theory.
- $R_{\rm BCS} \propto \exp \left[\left(\Delta p_{\rm F} v_{\rm s} \right) / kT \right]$ where $p_{\rm F} v_{\rm s} / kT \propto \sqrt{\coth(\ell/\xi_0)}$
- $\ell \approx (24 \text{ \AA}) \times (\beta 1)$
- As RRR drops below ~100, "parasitic" term starts to wreck R_{BCS}.
- This theory describes medium-field Q-slope.

Conclusions

- Parameter space of SRF thin film development is huge.
- Clearly lots of interesting work still to be done in this field.
- Thank you for your attention.