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Definitions

« The electromagnetic response of a metal, whether
normal or superconducting, is described by a
complex surface impedance, Z=R+iX

R : Surface resistance
X : Surface reactance

Both R and X are real
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Definitions

For a semi- infinite slab:

E, (0)
j:Jx(z)dz

Z = Definition

_E©) _ E, (0)
“H,0 CHE @,

From Maxwell
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Definitions

The surface resistance is also related to the power
flow into the conductor

Z=27,5(0,)/S(0.)

/
Z, = (‘g‘—g)l © =3770 Impedance of vacuum

—

S=ExH Poynting vector

and to the power dissipated inside the conductor

P={RH?(0)
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Normal Conductors (local limit)

Maxwell equations are not sufficient to model the
behavior of electromagnetic fields in materials. Need
an additional equation to describe material properties

N, I ¢ =0 (w)=

ot 7 1 1-iwrt

For Cu at 300 K, 7 =3x10"sec
so for wavelengths longer than infrared J =cE
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Normal Conductors (local limit)

* In the local limit J(z) =0 E(2)
* The fields decay with a NG
characteristic length (skin depth) 5:(ﬂ wa]

EX(Z) —E (O) e—z/5 e—iz/é'

H, @)=~ LE ()
CE(0)  (1+i) (1+i) v
_Hy(O)_ 5 Hy @O = iy = (1+1 )( ]
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Normal Conductors (anomalous limit)

« At low temperature, experiments show that the surface
resistance becomes independent of the conductivity

* As the temperature decreases, the conductliyity o increases
— The skin depth decreases 5:[ 2 j
My OO

— The skin depth (the distance over which fields vary) can
become less then the mean free path of the electrons (the
distance they travel before being scattered)

— The electrons do not experience a constant electric field
over a mean free path

— The local relationship between field and current is not
valid J(2) # 0 E(2)

3 Thomas Jefferson National Accelerator Facilit b
.{effergun Lab . @ fJSA



Normal Conductors (anomalous limit)

Introduce a new relationship where the current is
related to the electric field over a volume of the size
of the mean free path (I)

—_ -

R R E(F,t—-R/v -
Jd F)]e-R“ with R=F'—=F
47zl

L-l

Specular reflection: Boundaries act as perfect mirrors
Diffuse reflection: Electrons forget everything
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Normal Conductors (anomalous limit)

 |n the extreme anomalous limit
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Fig. 2 Anomalous skin effect in a 500 MHz Cu cavity
P . fraction of electrons specularly scattered at surface

1- p: fraction of electrons diffusively scattered
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Normal Conductors (anomalous limit)

1/3
R(l = o) =3.79x10"° 0" (Lj
03

ForCu: |/0=6.8x10"Q-m?

| 1/3
3.79x10° @*?| —
R(4.2 K,500 MHz) ~"77H ¢ (o') o1
R(273 K,500 MHz) U0 '
20

Does not compensate for the Carnot efficiency
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Surface Resistance of Superconductors

Superconductors are free of power dissipation in static
fields.

In microwave fields, the time-dependent magnetic field in the
penetration depth will generate an electric field.

- - 0B
VXE=—-——
ot

The electric field will induce oscillations in the normal
electrons, which will lead to power dissipation
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Surface Impedance in the Two-Fluid Model

In a superconductor, a time-dependent current will be carried
by the Copper pairs (superfluid component) and by the
unpaired electrons (normal component)

J=J +1,
J =0 Ee™™ (Ohm's law for normal electrons)
2ne’ _ -
J, =i——E,e™ (myV, =—eE,e™)
m, @
J=cEe
. . 2n e° 1
o =0, tlo, with o, =——=

mew - luo;tl_za)
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Surface Impedance in the Two-Fluid Model

For normal conductors R, :i
00
For superconductors
R =% 1_ :1 Zanzzlo'g
A (o, +io,) | A o +0; A O

The superconducting state surface resistance is proportional
to the normal state conductivity
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Surface Impedance in the Two-Fluid Model

R, =+
A o,
n e’l [ A(T)} 1
o, = oc | exp| —— O, = >
M, Ve KT Ho AL @O

R, o< A’ @ | exp[—@}
KT

This assumes that the mean free path is much larger than
the coherence length

3 Thomas Jefferson National Accelerator Facilit b
.{effergun Lab . @ 656‘



Surface Impedance in the Two-Fluid Model

For niobium we need to replace the London penetration
depth with

A=A J1+&11

As a result, the surface resistance shows a minimum when

£~
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Surface Resistance of Niobium

Surface Resistance -Nb -1500 MHz
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Electrodynamics and Surface Impedance
in BCS Model

HO¢+ Hex ¢ = Iha_¢

ot
e
H, =— ) A(r,t)p
ex mCZ (I )pl
H, is treated as a small perturbation H, <<H,

There is, at present, no model for
superconducting surface resistance at high rf field

R[R- A] I(a),R,T)e_'E
J ocJ ~ dr

similar to Pippard's model

3(k) = ==K (k) AK)

K(0)=0: Meissner effect

-4 Thomas Jefferson National Accelerator Facilit
.{effergun Lab . @ 655‘



Surface Resistance of Superconductors

Temperature dependence

—close to T, :
t4
dominated by change in A(t) —— 03 | , |
(1 t2 )A Niobium —
- Lead ----
10 Nb,Sn ... -
T
—for T <—=: 10° 1)
2 .l
. . . a/ § 10°)
dominated by density of excited states ~e /T &
107
A A
Rs ~ ?(()2 eXP _ﬁ 108
1095 20 é.!o a0 =
Tc T
Frequency dependence Figure 4.5: Theoretical surface resistance at 1.5 GHz of lead, niobium and
Nb3Sn as calculated from program [94]. The values given in Table 4.1 were
a)z iS a gOOd approximation used for the material pamuﬁetiﬁ. e ;
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Surface Resistance of Superconductors

* The surface resistance of superconductors depends on the
frequency, the temperature, and a few material parameters

— Transition temperature
— Energy gap

— Coherence length

— Penetration depth

— Mean free path

* A good approximation for T<T_/2 and w<<A/h is

R, AW exp _A . R..
T KT
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Surface Resistance of Superconductors

R, Ay exp _A N, R..
T KT

In the dirty limit | < & Recg o< 177
In the clean limit | > & Rges o< |
Rres:

Residual surface resistance
No clear temperature dependence
No clear frequency dependence

Depends on trapped flux, impurities, grain boundaries, ...
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Surface Resistance of Superconductors
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REDUCED TEMPERATURE T./T
Fig. 2. Temperature dependence of surface resistance of niobium at
3.7 GHz measured in the TE;,, mode at H, ~10G. The values
computed with the BCS theory used the following material para-
meters:
T=925K; i(T=0,1=00)=3204;
A0)/kT=1.85; Z(T=0,1=00)=620A; I=1000Aor 80A.
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Fig. 5. The surface resistance of Nb at 42K as a function of
frequency [62,63]. Whereas the isotropic BCS surface resistance
(- - ) resulted in Rocw'® around 1 GHz, the measurements fit
better to @* (- —-). The solid curve, which fits the data over the
entire range, is a calculation based on the smearing of the BCS
density-of-states singularity by the energy gap anisotropy in the
presence of impurity scattering [61]. The authors thank G. Miiller
for providing this figure.
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Surface Resistance of Niobium

Surface Resistance of Nio bium
at F =700 MHz
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Surface Resistance of Niobium
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Super and Normal Conductors

 Normal Conductors
— Skin depth proportional to w12
— Surface resistance proportional to w'2— 23
— Surface resistance independent of temperature (at low T)
— For Cu at 300K and 1 GHz, R.=8.3 mQ

« Superconductors
— Penetration depth independent of w
— Surface resistance proportional to w?
— Surface resistance strongly dependent of temperature
— For Nb at 2 K and 1 GHz, R,=7 nQ

However: do not forget Carnot
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