SURFACE PREPARATION CLEAN ROOM TECHNIQUES

Jean Delayen

Thomas Jefferson National Accelerator Facility
Old Dominion University

Required Procedures for Qualifying SRF Cavities

- Degreasing surfaces to remove contaminates
- Chemical removal of exterior films incurred from welding
- Removal of internal bulk damage layer of niobium from fabrication (150um)
- Removal of hydrogen gas (absorbed during chemistry) from bulk
 Nb
- Chemical removal of internal surface for clean assembly (10-20um)
- High Pressure Rinsing to remove particulates from interior surfaces (incurred during chemistry and handling)
- Drying of cavity for assembly (reduce risk of particulate adhesion and reduce wear on vacuum systems)
- Clean assembly
- Clean evacuation

Basic Steps

Preparation step A
Removal of damage layer /
post purification / tuning

Preparation step B
Final cleaning and assembly
for vertical test

Preparation step C
Welding of connection to H
vessel / He vessel welding

<u>Preparation step D</u>
Final cleaning and assembly for module / horizontal test

Post Purification

- Cavity is fired at 1350°C with Ti for several hours
 - Ti will cover the Nb surface and cleans the Nb bulk by solid state diffusion
 - RRR is increased from 300 to 500-600
- Cavity is soft after firing, yield strength is reduced from 50 to 10 N/mmTi must be removed by etching around 80 µm from the surface

Post Purification

High Temperature Heat Treatment

Heat Treatment Furnace at Jlab up to 1250C

Ultrasonic Degreasing:

Why is degreasing needed

- To remove grease, oil and finger prints from cavity surfaces
- To remove surface contamination due to handling, RF measurements and QA inspection

Implementation:

- Ultrasonic degreasing with detergent and ultra pure water
- · Usually performed in Hepa filtered air
- Water quality is good, 18M-Ohm-cm, Filtration >0.2um
- Manually or semi-automated processes available
- Problem: Parts are wet and vulnerable to particulate contamination

Ultrasonic Cleaning

- Immersion of components in DI water and detergent medium
- Wave energy forms microscopic bubbles on component surfaces. Bubbles collapse (cavitation) on surface loosening particulate matter.
- Transducer provides high intensity ultrasonic fields that set up standing waves. Higher frequencies lowers the distance between nodes which produce less dead zones with no cavitation.
- Ultrasonic transducers are available in many different wave frequencies from 18 KHz to 120 KHz, the higher the frequency the lower the wave intensity.

Acid Etching of Sub-components & Cavities:

- Sub-components require
 - Removal of oxides which come from fabrication steps → lower losses and improve sealing
- Cavities require:
 - Interior chemistry to remove damaged surface layer incurred in welding and deep drawing (100-200um)
 - Exterior chemistry to remove surface oxides that occurred in welding (10-30um)

Implementation: (BCP or EP)

- Subcomponents usually processed by hand in wet bench
- Acid quality usually electronic grade or better, low in contaminants
- Acid temperature control required to prevent additional absorption of hydrogen (Q-disease)
- Acid mixture difficult to QA

The Need For Material Removal

P. Kneisel

Alternative Method of Material Removal → Barrel Polishing

Centrifugal Barrel Polishing (CBP)

[T.Higuchi, K. Saito, SRF 2003]

Implementation:

- Plastic stones and liquid abrasive added inside cavity and rotated
- Stones rubbing on surface removes material thus smoothing the surfaces (including weld areas)
- Benefit is less overall chemistry needed (80um), KEK
- Removal of material 2x on equators then irises

Niobium Material Removal by Chemistry

Niobium surface after BCP

Niobium surface after EP

Chemical Etching, Final Treatment

- Buffered Chemical Polish BCP by mixture of HF, HNO₃, H₃PO₄ at 1:1:2
 - Cooled at 15°C to avoid H pick up
 - Closed system for cooling and cleanliness
- Fast rinsing with pure water
- High pressure rinsing with ultra-pure water
- Drying and clean assembly

Chemical Etching

Buffered Chemical Polish (BCP)

HF (49%), HNO₃ (65%), H₃PO₄ (85%) Mixture 1:1:1, or 1:1:2 by volume typical

Oxidation

$$2Nb + 5HNO_3 \rightarrow Nb_2O_5 + 5NO_2$$

$$Nb_2O_5 + 6HF \rightarrow H_2NbOF_5 + NbO_2F 0.5H_2O + 1.5H_2O$$

Use of BCP:

- 1:1:1 still used for etching of subcomponents (etch rates of 8um/min)
- 1:1:2 used for most cavity treatments
 - Mixing necessary → reaction products at surface
 - Acid is usually cooled to 10-15C (1-3um/min) to control the reaction rate and Nb surface temperatures (reduce hydrogen absorption)

Acid Wasted After 15g/L Nb

Etch rate (um/min)

Dissolved Niobium in Acid (g/L) \rightarrow

Effects of BCP on The Niobium Surface

(BCP) Systems for Cavity Etching:

- Bulk & Final chemistry
 - Bulk removal of (100-200um)
 - Final removal of (5-20um) to remove any additional damage from QA steps and produce a fresh surface

Implementation:

- Cavity held vertically
- Closed loop flow through style process, some gravity fed system designs
- Etch rate 2X on iris then equator
- Temperature gradient causes increased etching from one end to the other
- Manually connected to the cavity but process usually automated

Electropolishing of Niobium

Electropolishing of half cells (Scheme)

Electropolishing

Electropolishing of 1-cell cavities (Scheme)

Surface Roughness of Niobium

- Standard: chemical etching
 - HF, HNO₃, H₃PO₄

Electro polishing

Electropolishing Systems

DESY

Electropolishing Systems

JLAB

Electropolishing Systems

JLAB

Electropolishing of 9-cell Resonators (Nomura Plating & KEK)

Surface Roughness of Niobium

Electropolish (EP)

Hydrogen Gas

1 part HF(49%), 9 parts H₂SO₄ (96%)

Reaction:

Oxidation

$$2\text{Nb} + 5\text{SO}_4^{2-} + 5\text{H}_2\text{O} \rightarrow \text{Nb}_2\text{O}_5 + 10\text{H}^+ + 5\text{SO}_4^{2-} + 10\text{e}^-$$

Reduction

$$Nb_2O_5 + 6HF \rightarrow H_2NbOF_5 + NbO_2F 0.5H_2O + 1.5H_2O$$

$$NbO_2F 0.5H_2O + 4HF \rightarrow H_2NbOF_5 + 1.5H_2O$$

These are not the only reactions that take place!

Hydrogen Gas Shielding Experiment

Perforated Teflon Sheet

Fine Teflon Cloth (Numora Plating Co)

Basic Concepts of EP

Potential

- 0-V2- Concentration Polarization occurs, active dilution of niobium
- V2-V3 Limiting Current Density, viscous layer on niobium surface
- >V3 Additional Cathodic Processes
 Occur, oxygen gas generated

Nb Surface Effects After EP

Horizontally Rotated Continuous EP (HRC-EP)

EP Issues:

- HF disappears quickly from electrolyte due to surface temperature and evaporation and must be added routinely
- Difficult to add HF to the Sulfuric, reaction losses HF plus adds water to electrolyte which causes matt finishes
- Sulfur precipitates found on niobium surfaces (insoluble) and in system piping (monoclinic), impossible to add meaningful filtration
- Removal of sulfuric from surfaces difficult and requires significant amounts of DI water, hydrogen peroxide of alcohol rinses
- Full understanding of chemistry is still missing
- Typically cavity processed horizontally, slowly rotated
- Etch rate 2X on iris then equator (0.4um/min) –same as for BCP

Continuous Flow Rinse

Ultrapure water (18 M Ω -cm)

High Pressure Rinsing (HPR)

 Rinsing of cavities with up to 1000 psi water jets removes many particles.

High Pressure Rinsing:

- The need for HPR surface cleaning:
 - Entire surface contaminated after chemistry, early field emission will result if not performed
 - Effective at removing particulates on the surface after assembly steps

ISSUES:

- HPR systems are still not optimized for the best surface cleaning performance
- Surface left in a vulnerable state, wet

JLab HPR Cabinet in Clean Room

HPR spray heads needs to be optimized for a particular geometry!

Very effective on irises

Equator fill with water → too high flow rate

For a given pump displacement the nozzle opening diameter and number of nozzles sets the system pressure and flow rate

String Assembly

- A cavity string is assembled in a class 10 or class 100 clean room on an assembly bench over a period of several days after they have been qualified in a vertical or horizontal test.
- Prior to assembly, the cavities are high pressure rinsed for several hours, dried in a class 10 clean room, auxiliary parts are attached, high pressure rinsed again, dried and mounted onto the assembly bench.
- The most critical part of the assembly is the interconnection between two cavities, monitored by particle counting

String Assembly

Assembly: Vacuum Hardware

- The cavity strings have to be vacuum tight to a leak rate of < 1 x10⁻¹⁰ torr l/sec
- The sealing gaskets and hardware have to be reliable and particulate-free
- The clamping hardware should minimize the space needed for connecting the beamlines

Assembly: Vacuum Hardware

Present choice for TESLA cavities:

diamond-shaped AlMg₃ –gaskets + NbTi flanges + bolts

AlMg-Gasket

Alternative:

radial wedge clamp, successfully used for CEBAF upgrade cavities

Radial Wedge Clamp

Cavity String Assembly in Clean Room

DESY

Cavity String Assembly in Clean Room

LEP

JLab Clean Room

Cavity String Assembly

SNS Medium Beta Cavity String: three 6-cell 805 MHz cavities

Pump-out assembly

String Assembly

Jlab Upgrade String of eight 7-cell cavities in class 100 Clean room on assembly bench

String Processing Sequence for SNS

Cavity Assembly Sequence

Coupler Insertion Procedure- Removal From Coupler Cleanroom Storage Cart

Coupler Insertion Procedure- Transporting to string tooling

Coupler Insertion Procedure- Insertion into cavity

String Assembly

Comments on Facilities and Process Steps

RF Cavities

 RF structures have excellent quality in materials and fabrication but flange designs require significant hardware for assembly and extensive manual labor → lots of room for errors

Facilities

- Cleanroom environments are typically excellent, easy to monitor
- DI water quality excellent in most cases, easy to monitor
- Sub-component cleaning not at same level with cleaning quality for cavities
- Many system failures reported, leading to large recovery times
- No two process system designs the same

Process Steps

- Assembly steps present the most interaction and largest source of particulate contamination, very difficult to monitor
- Subcomponent cleaning insufficient but easy to monitor
- BCP Chemistry in good control easy to monitor
- EP currently has less process control, more process variables and not fully understood

Comments on Process Monitoring

- Currently
 - Process variables being monitored are poor indicators of cavity performance success or failure!
 - Cavity performance studies are narrowly focused and not conclusive
 - Knowledge of the performance impact generated with each process step is unknown

These must be addressed to reduce performance spread

Conclusions

- To be successful with current process steps:
- Must Set A Culture For High Quality
 - Fully document best practices and procedures
 - Provide routine training for the procedures
 - Expect quality during procedure implementation and monitor implementation progress
 - Record meaningful process data and continuously review

Conclusions

- We Should Push For Process Improvement:
 - Optimize HPR effectiveness for a given RF structure
 - Implement witness sample monitoring to develop an understanding of areas that need improvement
 - EP process we need to develop a better understanding of the chemistry and improve process control and monitoring
- Assembly process we need to develop better online monitoring to reinforce personnel actions (particle counters) and improve hardware cleaning steps to reduce handling (automate)
- We should not accept any new process or procedure without scientific evaluation
- Reevaluate cavity flange designs → make cavity more assembly friendly

