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What is “Emittance” ?
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A beam is made of many, many particles,

each one of these particles is moving with

a given velocity. Most of the velocity

vector of a single particle is parallel to the

direction of the beam as a whole (s).

There is however a smaller component of

the particles velocity which is

perpendicular to it (x or y).
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Transverse Phase Space

• The emittance describes the beam quality,  assuming linear behavior due to 
second order differential equation.

• It is defined as the area in phase space including the particles (generally an 
ellipse).

• The measurements are base on beam width and angular width measurements at a 
single location or multiple measurements of beam width with additional optics 
calculations.
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Variation of the ellipse along the transport line



Ellipse Parameters
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Beam ellipse and its orientation is defined

by the beam matrix                   for which the emittance is

which is related to the Twiss or Courant-Snyder parameters:

The equation of the beam ellipse is:
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beam half divergence
correlation between x and x’ 



α> 0 : beam is converging
α < 0 : beam is diverging
α = 0 : beam has minimum or maximum
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• Transverse phase space:

– x,x’ (x-position, angle in horizontal plane)

– y,y’ (y-positon, angle in vertical plane)

• Longitudinal phase space

– E, Ф (Energy and phase or time of arrival)
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6-dimensional Phase Space



Transport of a single particle along a transfer line
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Thin lens approximation:











1

01

K
M quadrupole



USPAS09 at UNM 9Accelerator and Beam Diagnostics

Adiabatic damping
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Why measure Emittance?
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Why measure Emittance?



In a Synchrotron the lattice functions are fixed,

beam width and emittance are related:

and 

The β function and the Dispersion function D 
are known or measured with other means 
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How to measure Emittance?
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Wire Scanners

A thin wire is quickly moved across the beam
Secondary particle shower is detected outside the vacuum chamber
on a scintillator/photo-multiplier assembly 
Position and photo-multiplier signal are recorded simultaneously
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Wire scanner profile

High speed needed
because of heating.

Adiabatic damping

Current increases due to
speed increase

Speeds of up to 20m/s
200g acceleration

Measure secondary 
particles outside the
vacuum chamber or
secondary emission
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The Slit and Grid method

• If we place a slit into the beam 
we cut out a small vertical slice 
of phase space

• Converting the angles into 
position through a drift space 
allows to reconstruct the 
angular distribution at the 
position defined by the slit

x’

x

slit
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Transforming angular distribution to profile

• When moving through a 
drift space the angles don’t 
change (horizontal move in 
phase space)

• When moving through a 
quadrupole the position 
does not change but the 
angle does (vertical move
in phase space)

x’

x

slit

x’

x

slit

x’

x

slit

Influence of a drift space

Influence of a quadrupole
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Secondary Emission Grids
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SEMGrid electronics



The Slit and Grid Method
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Moving slit emittance measurement

• Position resolution given by slit size and 
displacement

• Angle resolution depends on resolution of 
profile measurement device and drift distance

• High position resolution → many slit positions 
→ slow

• Shot to shot differences result in 
measurement errors
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Transverse emittance line

Kicker QuadrupoleQuadrupole

SEMGrid
X’

X

X’

X

X’

X

X’

X

X’

X

at slit after 1. drift space after 1. quadrupole after 2. quadrupoleafter 2. drift space

Kicker
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Single pulse emittance measurement

 

 

Kickers
slit

SEMgrid

Every 100 ns
a new profile

Quadrupole Quadrupole
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Result of single pulse emittance measurement
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Single Shot Emittance Measurement

Advantage: 
Full scan takes 20 μs

Shot by shot comparison possible

Disadvantage:
Very costly

Needs dedicated measurement line

Needs a fast sampling ADC + memory for each 
wire

Cheaper alternative:
Multi-slit measurement
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Accelerator and 
Beam Diagnostics

Multi-slit measurement

Needs high resolution profile detector

Must make sure
that profiles
don’t overlap

beam

Scintillator + TV + frame grabber
often used as profile detector

Very old idea, was used with photographic plates
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Pepperpot

Uses small holes instead of slits

Measures horizontal and vertical emittance in a single shot
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Photo of a Pepperpot Device
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Scintillating Screens

Method already applied in cosmic ray 
experiments

• Very simple

• Very convincing

Needed: 

• Scintillating Material 

• TV camera 

• In/out mechanism

Problems:

• Radiation resistance of 
TV camera

• Heating of screen (absorption of
beam energy)

• Evacuation of electric charges
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Frame grabber

• For further evaluation the video 
signal is digitized, read-out and 
treated by program 

• In new cameras digitization is done 
within the camera and digital image 
information is accessed via Ethernet 
or USB
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Test for resistance against heat-shock
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Material

r

g/cm3

cp at 20ºC

J/gK

k at 100ºC

W/mK

Tmax

ºC

R at 400 

ºC

Ω.cm

Al2O3 3.9 0.9 30 1600 1012

ZrO2 6 0.4 2 1200 103

BN 2 1.6 35 2400 1014

Better for electrical conductivity (>400ºC)

Better for thermal properties

(higher conductivity, higher heat capacity)
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Degradation of screen

 

Degradation clearly visible
However sensitivity stays essentially 
the same
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Properties of scintillating material
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Screen mechanism

• Screen with graticule
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• To determine ε, β, α at a reference point in a beamline one needs at 
least three w measurements with different transfer matrices 
between the reference point and the w measurements location.

• Different transfer matrices can be achieved with different profile 
monitor locations, different focusing magnet settings or 
combinations of both.

• Once β, α at one reference point is determined the values of β, α at 
every point in the beamline can be calculated.

• Three w measurements are in principle enough to determine ε, β, α
• In practice better results are obtained with more measurements. 
• However, with more than three measurements the problem is over-

determined. 
• χ2 formalism gives the best estimate of ε, β, α for a set of n 

measurements wi i=1-n with transfer matrix elements ci, si.
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3 Profile Measurement and Quadrupole Scan
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3-Profile Measurement



• Measure 3 profiles at 3 positions around a waist

• Spot width corresponds to vertical lines

• Transform back to the first Profile

• Lines become tangents to the beam ellipse
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3-Profile Measurement

x’

x

x’

x

x’

x
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An example from CERN PS



• Works the same way as the 3-Profile 
measurement

• The profile is taken at a fixed position (needs a 
single profile measurement system)

• Vary a quadrupole and measure the profile 
width for each quadrupole setting
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Quadrupole Scan
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Quadrupole Scan at CTF-3



Optical Mismatch at Injection

x

x’

Matched phase-space ellipse

Mismatched injected beam

• Can also have an emittance blow-up through optical mismatch

• Individual particles oscillate with conserved CS invariant:                          

ax =  x2 + 2 xx’ +  x’2
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Optical mismatch at injection
• Injected beam of emittance , characterised by a different ellipse (*, 

*) to matched ellipse (, ) generates (via filamentation) a large ellipse 

with original shape (, ) but larger 

x

x’

After filamentation
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Matched ellipse 
determines beam shape

Turn 1 Turn 2

Turn 3 Turn n>>1
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Filamentation

USPAS09 at UNM 45Accelerator and Beam Diagnostics



Filamentation
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Filamentation
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Filamentation
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Ionisation Profile Monitor
Uses rest gas in the vacuum

which is ionized.



Image Intensifier



Result from IPM



Optical Transition Radiation



Synchrotron Radiation

Dipole magnet

bending radius ρ



Results from Synchrotron Radiation



Longitudinal Phase Space Transformation

CARE workshop on 
emittance 

measurements
U. Raich CERN 

AB/BI  
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Kicker

Buncher

Spectrometer magnet

Kicker

SEMGridTransformer

• Spectrometer produces image
of slit on second slit

• second slit selects energy slice
• first kicker sweep phase space 
over all energies

• buncher rotates energy slice in 
phase space

• at second spectrometer the
phase distribution is
transformed into an
energy distribution analyzed by
the second spectrometer

• second kicker corrects for first 
kick

Buncher RF



Longitudinal Emittance measurement

CARE workshop on 
emittance 

measurements
U. Raich CERN 
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Photos of the line

CARE workshop on 
emittance 

measurements
U. Raich CERN 
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Kicker

Buncher

Spectrometer magnet

Kicker

SEMGrid
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Beam Diagnostics

Computed Tomography (CT)

Principle of Tomography:
• Take many 2-dimensional Images at 
different angles
• Reconstruct a 3-dimensional picture
using mathematical techniques
(Algebraic Reconstruction Technique,
ART)
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The reconstruction 

Produce many 
projections of the 
object to be 
reconstructed

Back project 
and overlay the 
“projection 
rays”

Project the back-
projected object 
and calculate the 
difference 

Iteratively back-
project the 
differences to re-
construct the 
original object
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Beam Diagnostics

Some CT resuluts
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Beam Diagnostics

Computed Tomography  and Accelerators

RF voltage

Restoring force for non-
synchronous particle

Longitudinal phase space

Projection onto Φ axis 
corresponds to bunch profile
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Beam Diagnostics

Reconstructed Longitudinal Phase Space
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Beam Diagnostics

Bunch Splitting


