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Basic cryomodule design:

= The cavity is immersed in a liquid helium bath, which is pumped to remove helium vapor boil-off as well as
to reduce the bath temperature.

= The helium vessel is often pumped to a pressure below helium's superfluid lambda point (2.172 K, 0.0497
atm) to take advantage of superfluid's unique thermal properties.

= An RF input coupler and other penetrations create “spurious” sources of heat losses to LHe. To reduce
the heat losses proper design methods must be used (material choice, heat intercepts at intermediate
temperatures, etc.)

= The cold portions of the cryomodule need to be extremely well insulated, which is best accomplished by a
vacuum vessel surrounding the helium vessel and all ancillary cold components.
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Cryomodule functions and design considerations
= Cryogenic environment for the cold mass :

+ Cavities/magnets in their vessels filled with liquid He either at atmospheric pressure at ~4.2 K or
sub atmospheric He below lambda point;

+ He coolant (liquid and gas) distribution at required temperatures;
+ Low-loss penetrations for RF, cryogenics and instrumentation.

= Shields and insulation (vacuum and superinsulation) for the sources of “parasitic” heat transfer from
room to cryogenics temperature produced by three mechanisms:

+ Thermal radiation;
+ Heat conduction;
+ Heat transfer by convection.
= Component integration:
+ Structural support of the cold mass;
+ |[ssues concerning different thermal contractions of materials;
+ Precise alignment capabilities and reproducibility with thermal cycling.
= Magnetic shielding (< 10 G residual field).
= Pulsed vs CW operation: number of thermal shields, LHe pipe dimensions.
= High vs low RF power: heat handling — more complicated input coupler design.
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A cryomodule contains a variety of complex technological objects: cavities and their
ancillaries, but also magnets and BPMs.
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Heat conduction
= There are many penetrations from RT environment: input couplers, Rf cables, instrumentation, ...
= Proper choice of materials with low thermal conductivity (temperature dependent) and thermal path length

is crucial. T,
: : . _A
= Example: copper-plate stainless steel instead of pure copper for input couplers. P = B IA(T)dT
= Thermal intercepts at intermediate temperatures can reduce heat leak to LHe. T
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Heat transfer by convection

= Convective exchange from RT is managed by providing insulation vacuum between the room temperature
vessel and the cold mass.
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Heat radiation
= Even though vacuum is a very good insulator, the radiative power from 300 K to 2 K is significant:
-7
Po=AXxXogX ( L
[ 1. (1‘52)'%}
& &k

where the Stefan-Boltzman constant o5 = 5.67x108 W/n?K, the radiative power is transferred from a
surface area A, having an emissivity &, at temperature T, into a surface area A,.

= ForA;=A,=1m? T,=300K, T,=2K, g =5=01,we get P,, =23 W.
= Materials with low emissivity are utilized when possible.

= Example: electropolished copper (shiny surface) has emissivity of ~0.02 as opposed to ~0.1 for a dull
surface.

= Thermal shields anchored to ~80 K and/or ~5 K and multilayer superinsulation (MLI) are used to reduce this
number.

= For all practical purposes 30 layers of MLI on top of the thermal shields is enough to reduce the radiative
load to acceptable level.
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= Reduces 1 G background field to < 10 mG — need attenuation factor =1/0.010 = 100. The 1 G background
field includes earths field as well as fields from other sources (i.e. rebar and magnet stray fields).

= May need two or three layers of shielding if the vacuum vessel is made of stainless steel.

= If the vacuum vessel is made of soft iron, it has to be de-gaussed, but will effectively shield the magnetic
field afterwards. May still need one internal layer of shielding.

= Shield around components of the cryomodule may be hindered by geometric constraints.

= There are two type of materials available from industry: AMUMETAL is effective at RT, but its shielding
degrades at lower temperatures; CRYOPERM-10 performs well at very low temperatures.
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Pac =COPX (denamic + Pxatic )

= Pulsed operation with low duty cycle (XFEL, ILC): P, >> Py namic — very important to thermally
insulate the cold mass as good as possible, may require additional thermal shields (5 K) and better
superinsulation.

= CW operation (CEBAF, Cornell ERL): Py amic >> Pgtatic — may not need as good thermal shielding as in
the pulsed mode, but may need to increase cryogen piping cross section and address some heating
issues with dedicated thermal intercepts.
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= Cryomodule for pulsed operation

= Static heat load (2 K) < 3 W for a 12 m long
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= High gradient CW operation: dynamic cavity heat load dominates at 2 K
= Module design:
- Heat transfer through LHe = need large enough pipes
- Mass transport of helium gas = need large enough pump pipes
- High HOM losses = need cooling of absorbers
- High CW RF power = more cooling for input couplers (dedicated heat intercepts)
= Cavity:
- Cavity treatment for high Q, is desired
- Optimal bath temperature: 1.8 Kvs 2 K

Cryogenic loads in the ERL injector module:

~ 25 W at 2 K (dominated by the dynamic cavity load),
~T70 W at 5 K (dominated by the input coupler and HOM absorber load),
<700 W at 80 K (dominated by the input coupler load).
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2K He gas return pipe o five 2-cell cavities

e symmetric beam line
- five twin coax input couplers
- round beam line absorbers

e six beam line HOM loads for
aggressive HOM damping

e cold cavity fine-alignment

HOM absorber/
RF input coupler

Cavity inside He vessel

Frequency tuner

e Cryomodule concept based on the well established TTF cryomodule ]
- Cavities supported by large diameter Helium-gas return pipe (HGRP)
o Significant modifications for ERL specific needs:

- high cryogenic loads at 2 K (cavity), 5 K and 80 K (HOM power, input couplers),
HOM loads, ...
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Changes compared to TTF cryomodule:

= Increase diameter of 2-phase 2 K He pipe for CW cavity operation

= Direct gas cooling of chosen 5 K and 80 K intercept points with He gas flow through small heat exchangers
= HOM absorbers between cavities

= 3 layers of magnetic shielding for high Q,

= No 5 K shield, only a 5 K cooling manifold
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Example 3: ANSY S ssmulations of

the ERL main linac cryomodule
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CESR cryomodule

Vacuum insulation % shield Small

Suparsonduciing Dampad Caviidy for E]w
LHe vessel

DOOR KNOB TRANSFORMER ot vALVE gate valve

L He
FREQUENCY
TUNER

HOM DAMPER

INPUT COUPLER

GATE VALVE

H(HM DAMPER

N2 SHELD

SOLEIL cryomodule

steme d’accord lignes de transfert cryo )
systetne daccor et séparateur de phase coupleur de puissance

(180 kHz/mm (200 kW)
resolution - 50 nm) \ /

rupture conduction
4°K — 300°K transition

Inox absorbant
i
X |
e = ="
enceinte a vide /
cavite coupleur HOM enceinte hélium
352 MHz

June 24, 2009 USPAS 2009, S. Belomestnykh, Lecture 9: Cryomodule design 19



Cryomodul e Instrumentation and
ancillary equipment

Cornell University

Laboratory for Elementary-Particle Physics

RF Vacuum
« Cavity field probes * lon pumps for cavity and input coupler
« HOM antennae * Turbo and roughing pumps for insulation vacuum
* Arc detectors for input couplers * Vacuum gauges (cold cathode and convectron)
* e~ pick-up probes in the input couplers * Gate valves
* High voltage bias for input couplers
Tuner
Temperature sensors « Stepping motor
+ Low temperature: carbon resistors, silicon diods, * Piezo elements
Cernox sensors * Position sensors
* CLTS’s for the temperature range from 4 K to 300 K * Limit switches and mechanical limits
« Thermocouples and/or Platinum Resistance * Tuner force
Thermometers (PT-100, PT-1000) for places that are
near/above RT Other

* IR sensors for input couplers » Wire Position monitors (WPM)

* Cooling air flow and pressure
Cryogenics - Safety hardware: safety valve, burst disk, ...
* LHe level sticks
* He bath heater
* HOM load heaters
* He gas flow meters
* Pressure transducers
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= APT cryomodule
= CESR cryomodule
= Cornell ERL HTC cryomodule
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= Cryomodule main functions: provide cryogenic environment for the cold mass;

component integration (structural support; heat & thermal stress management; precise
alignment.)

= A cryomodule contains a variety of complex technological objects: cavities and their
ancillaries, but also magnets and BPMs.

s Next lecture: input couplers and HOM dampers.
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