Unit 10 – Lectures 14

Cyclotron Basics

MIT 8.277/6.808 Intro to Particle Accelerators

Timothy A. Antaya
Principal Investigator
MIT Plasma Science and Fusion Center
Outline

- Introduce an important class of circular particle accelerators: Cyclotrons and Synchrocyclotrons

- Identify the key characteristics and performance of each type of cyclotron and discuss their primary applications

- Discuss the current status of an advance in both the science and engineering of these accelerators, including operation at high magnetic field

Overall aim: reach a point where it will be possible for to work a practical exercise in which you will determine the properties of a prototype high field cyclotron design (next lecture)
Motion in a magnetic field

Shoot a charged particle into a perpendicular magnet field—what happens?

It moves in a closed circle—why?
Magnetic forces are perpendicular to the B field and the motion

\[\vec{F} = q \vec{v} \times \vec{B} \]

It sees a sideways force - Lorentz Force

\[F = q \vec{v} B \]
Sideways force must also be *Centripedal*

If you did not no (1) the particle had charge (2) or that there was a magnetic field

\[F = \frac{m v^2}{r} \]

You could still infer a sideways (central force)
Governing Relation in Cyclotrons

- A charge q, in a uniform magnetic field B at radius r, and having tangential velocity v, sees a centripetal force at right angles to the direction of motion:

$$\frac{mv^2}{r} \hat{r} = q\vec{v} \times \vec{B}$$

- The angular frequency of rotation seems to be independent of velocity:

$$\omega = \frac{qB}{m}$$
Building an accelerator using cyclotron resonance condition

- A flat pole H-magnet electromagnet is sufficient to generate require magnetic field
- Synchronized electric fields can be used to raise the ion energies as ions rotate in the magnetic field
- Higher energy ions naturally move out in radius
- Highest possible closed ion orbit in the magnet sets the highest possible ion energy
There is a difficulty—we can’t ignore relativity

- A charge q, in a uniform magnetic field B at radius r, and having tangential velocity v, sees a centripetal force at right angles to the direction of motion:

$$\frac{mv^2}{r} \hat{r} = q\vec{v} \times \vec{B}$$

- Picking an axial magnetic field B and azimuthal velocity v allows us to solve this relation:

$$\frac{mv^2}{r} = qvB \quad \rightarrow \quad \omega = v/r = qB/m$$

- However:

$$m = \gamma m_0$$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$
Relativistic Limit on Cyclotron Acceleration

- The mass in $\omega = qB/m$ is the relativistic mass $m = \gamma m_0$
- $\omega \approx \text{constant}$ only for very low energy cyclotrons

<table>
<thead>
<tr>
<th>Proton Energy</th>
<th>% Frequency decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 MeV</td>
<td>~1%</td>
</tr>
<tr>
<td>250 MeV</td>
<td>~21%</td>
</tr>
<tr>
<td>1.0 GeV</td>
<td>~52%</td>
</tr>
</tbody>
</table>
There are 3 kinds of Cyclotrons:

- **CLASSICAL**: (original)
 - Operate at fixed frequency \(\omega = qB/m \) and ignore the mass increase
 - Works to about 25 MeV for protons \((\gamma \approx 1.03) \)
 - Uses slowly decreasing magnetic field ‘weak focusing’

- **SYNCHROCYCLOTRON**: let the RF frequency \(\omega \) decreases as the energy increases
 - \(\omega = \omega_0 / \gamma \) to match the increase in mass \((m = \gamma m_0) \)
 - Uses same decreasing field with radius as classical cyclotron

- **ISOCRONOUS**: raise the magnetic field with radius such that the relativistic mass increase is just cancelled
 - Pick \(B = \gamma B_0 \) \{this also means that \(B \) increases with radius\}
 - Then \(\omega = qB/m = qB_0/m_0 \) is constant.
 - Field increases with radius– magnet structure must be different
Some Examples of Cyclotrons
1932 Cyclotron

Evacuated Beam
Chamber sits between magnet poles:

180° ‘Dee’

Vacuum Port

Internal Energy Analyzer

Ion Source is a gas feed and a wire spark gap
The Largest...

- Gatchina Synchrocyclotron at Petersburg Nuclear Physics...
 1000 MeV protons and 10,000 tons
Superconducting Isochronous Cyclotron

LHe-Supply Vessel w/4 Cryocoolers

Compressors (6x) for cryocoolers

Shield Cooler (2x)

Superconducting Coil

250 MeV Superconducting Proton Cyclotron

antaya@psfc.mit.edu / (617) 253-8155
The Highest Magnetic Field...

- Still River Systems 9 Tesla, 250 MeV, synchrocyclotron for Clinical Proton Beam Radiotherapy
The Newest...

- Nanotron: superconducting, cold iron, cryogen free 'portable' deuterium cyclotron
New Cyclotrons and Synchrocyclotrons are coming.

Isotron – for short lived PET isotope production:
- Protons or heavy ions
- 30-100 MeV
- Synchrocyclotron or isochronous cyclotron is possible

Also:
- **Gigatron**: 1 GeV, 10 mA protons for airborne active interrogation
- **Megatron**: 600 MeV muon cyclotron (requires a gigatron to produce muons and a reverse cyclotron muon cooler for capture for accel.)
Key Characteristics of the Cyclotron ‘Class’

Cyclotron utility is due to:

- Ion capture and Beam formation at low velocity, followed by acceleration to relativistic speeds in a single device
- Efficient use of low acceleration voltage makes them robust and uncritical; pulsed or CW operation allowed
- Beam characteristics are wrapped up in the design of the static magnetic guide field; ions have high orbital stability
- Ion species: H+ --> U; neg. ions (e.g. H−), molecular ions (e.g. HeH+)
- Intensities; picoamps (one ion per rf bucket) to milliamps
- γ: 0.01 --> 2.3

Have resulted in:

- 2nd largest application base historically and currently (electron linacs used in radiotherapy are 1st)
- Science (Nuclear, Atomic, Plasma, Archeology, Atmospheric, Space), Medicine, Industry, Security
- Highest energy CW accelerator in the world: K1200 heavy ion at MSU- 19.04 GeV ²³⁸U
Key Characteristics—prob. most important:

Cyclotron utility is due to:

- Ion capture and Beam formation at low velocity, followed by acceleration to relativistic speeds in a single device
- Efficient use of low acceleration voltage makes them robust and uncritical; pulsed or CW operation allowed
- Beam characteristics are wrapped up in the design of the static magnetic guide field; ions have high orbital stability
- Ion species: H+ --> U; neg. ions (e.g. H⁻), molecular ions (e.g. HeH⁺)
- Intensities; picoamps (one ion per rf bucket) to milliamps
- γ: 0.01 --> 2.3

Have resulted in:

- 2nd largest application base historically and currently (electron linacs used in radiotherapy are 1st)
- Science (Nuclear, Atomic, Plasma, Archeology, Atmospheric, Space), Medicine, Industry, Security
- Highest energy CW accelerator in the world: K1200 heavy ion at MSU– 19.04 GeV ²³⁸U
Classical Cyclotrons

- Weak focusing
- Phase stability
- Limited by Relativistic Mass Increase
How to manage the relativistic change in mass?

There are 3 kinds of Cyclotrons:

- **CLASSICAL**: (original)
 - Operate at fixed frequency \(\omega = \frac{qB}{m} \) and ignore the mass increase
 - Works to about 25 MeV for protons \((\gamma \approx 1.03) \)
 - Uses slowly decreasing magnetic field ‘weak focusing’

- **SYNCHROCYCLOTRON**: let the RF frequency \(\omega \) decreases as the energy increases
 - \(\omega = \frac{\omega_0}{\gamma} \) to match the increase in mass \((m = \gamma m_0) \)
 - Uses same decreasing field with radius as classical cyclotron

- **ISOCHRONOUS**: raise the magnetic field with radius such that the relativistic mass increase is just cancelled
 - Pick \(B = \gamma B_0 \) \(\{ \)this also means that \(B \) increases with radius\(\}
 - Then \(\omega = \frac{qB}{m} = \frac{qB_0}{m_0} \) is constant.
 - Field increases with radius– magnet structure must be different
The 1931 Cyclotron...
A flat pole electromagnet (3) generates a vertical magnetic field (m)

- Ions (P) rotate in the mid-plane of an evacuated split hollow conductor (1-2)
- Time varying electric fields (4) applied to the outside of this conductor raise the ion energies as ions rotate in the magnetic field and cross the split line gap- the only place where electric fields (e) appear
- Higher energy ions naturally move out in radius
- Highest allowed closed ion orbit in magnet sets the highest possible ion energy
Let’s break down the key phenomena that make cyclotrons work...

- We’ll do this in a very ‘raw’ manner- using elementary properties of ions, conductors and electromagnetic fields

- Why choose this approach?
 - To demonstrate just how utterly simple cyclotrons are
 - To get to better appreciate the key challenges in making cyclotrons work
 - To understand how the advance machines just shown are possible
Magnetic Field Generation

- A flat pole electromagnet (3) generates a vertical magnetic field (m)
- Ions (P) rotate in the mid-plane of an evacuated split hollow conductor (1-2)
- Time varying electric fields (4) applied to the outside of this conductor raise the ion energies as ions rotate in the magnetic field and cross the split line gap- the only place where electric fields (e) appear
- Higher energy ions naturally move out in radius
- Highest allowed closed ion orbit in magnet sets the highest possible ion energy
Typical large H Magnet
Magnetic field of a H Magnet

Full H-Shaped Magnet including all four quadrants
Ion Acceleration-- requires a bit more work...

- A flat pole electromagnet (3) generates a vertical magnetic field (m).
- Ions (P) rotate in the mid-plane of an evacuated split hollow conductor (1-2).
- Time varying electric fields (4) applied to the outside of this conductor raise the ion energies as ions rotate in the magnetic field and cross the split line gap— the only place where electric fields (e) appear.
- Higher energy ions naturally move out in radius.
- Highest allowed closed ion orbit in magnet sets the highest possible ion energy.
Acceleration really looks something like this...

\[\vec{F} = q \vec{E} \quad \& \quad \Delta W = q \Delta V = q V_0 \]
Why not magnetic field only acceleration?

Why not just use a magnetic field for both acceleration and bending?

\[\text{d}w = F \cdot ds = F \cdot \dot{r} \cdot dt \]

\[ds = v \cdot dt \]

\[\text{d}w = F \cdot \dot{r} \cdot dt = g(\dot{r} \times \dot{r}) \cdot \dot{r} \cdot dr
= g \cdot \dot{r} \cdot (\dot{r} \times \dot{r}) \cdot dt
= 0 \]

Static magnetic fields can do no work!
Ion Orbital Rotation Frequency– numerically

- Consider an arbitrary positive ion of atomic species \((A,Z)\) with \(Q\) orbital electrons removed. The ion cyclotron frequency would be:

\[
f = \frac{\omega}{2\pi} = \frac{qB}{2\pi m} = \left(\frac{Q}{A}\right) \frac{e}{2\pi m_0} \frac{B}{\gamma}
\]

- Where \(m_0\) is the rest mass of a nucleon (~940 MeV). Evaluating the constants:

\[
f = \left(\frac{Q}{A}\right) 15.23 \text{ MHz} \frac{B}{\gamma}
\]

- Some examples:
 - Low energy proton in 1 T field: 15.23 MHz
 - 250 MeV proton in 8.2T field: 98 MHz
 - 3.2GeV \(^{40}\text{Ar}^{16+}\) ion in 5.5T field: 30.8 MHz
Ion Motion in a cyclotron

- A flat pole electromagnet (3) generates a vertical magnetic field (m).
- Ions (P) rotate in the mid-plane of an evacuated split hollow conductor (1-2).
- Time varying electric fields (4) applied to the outside of this conductor raise the ion energies as ions rotate in the magnetic field and cross the split line gap—the only place where electric fields (e) appear.
- Higher energy ions naturally move out in radius.
- Highest allowed closed ion orbit in magnet sets the highest possible ion energy.
Alternative Expression in Momentum

- Again we equate the two expressions for the same force:

\[\frac{mv^2}{r} = qvB \rightarrow p = mv = qBr \]

- The momentum at any radius is completely defined by the magnetic field there!

- Also, at the same field B,
 - If \(p_3 > p_2 > p_1 \)
 - Then \(r_3 > r_2 > r_1 \)

- Since \(\omega = \frac{d\theta}{dt} = qB/m \), even though the three orbits are different in size, the ions will make 1 complete revolution at the same angular rate (unless \(m = \gamma m_0 \) is very different for the three momenta)
Special Challenges in Cyclotrons

- **Orbit Stability**
- **Initial beam Formation**
- **RF Acceleration**
- **Getting the beam out of the machine!**
 - \[p = e r B \quad \rightarrow \quad \frac{p}{e} = r B \]
 - We call \(R = r B \) the magnetic rigidity or magnetic stiffness
 - We will see that \(R \) shows up in the Cyclotron final energy formula— it’s in \(K_B = \frac{e^2 r^2 B^2}{2m_0} \)

In cyclotrons, the final energy is essentially set by the radius and B field at the point of beam extraction
Built In Orbit Stability - Weak Focusing

What happens if an ion is above or below the middle of the magnet during acceleration?

\[F_x = -q v B_x \]

\[\vec{F} = q \vec{v} \times \vec{B} \]

\[\vec{B} = B_0 \vec{r} \]

This is called weak focusing - it requires this field curvature. It means that B_0 decreases with increasing r.
The Field Index and Axial Stability

- An restoring force is required to keep ions axially centered in the gap
- We define the field index as:
 \[n = -\frac{r}{B} \frac{dB}{dr} \]

 - One can show that an axial restoring force exists when \(n > 0 \) (off median plane \(B_r \) has right sign)
 - Hence \(dB/dr < 0 \) is required since \(B \) and \(r \) enter in ratios
 - This condition can be met with a flat pole H-Magnet
Field Index n shows up in Equations of Motions

- Small oscillations of ions in r and z about equilibrium orbits:
 \[
 \ddot{x} + (1 - n)\omega^2 x = 0 \\
 \ddot{z} + n\omega^2 z = 0
 \]

- Have solutions:
 \[
 x = x_m \sin(1 - n)^{1/2} \omega t \\
 z = z_m \sin n^{1/2} \omega t
 \]

- Where ω is the cyclotron frequency

- Betatron Frequencies (Tunes):
 \[
 v_r = \omega_r / \omega = \sqrt{1 - n} \\
 v_z = \omega_z / \omega = \sqrt{n}
 \]

- Have real sinusoidal solutions for $0 < n < 1$; this condition is true in a classical cyclotron

- It’s also referred to as a weak focusing accelerator
Initial Beam Challenge

Electric Focusing & De Focusing - low velocity ions spend much time in time varying electric fields.

High Frequency Oscillator

Magnetic Field

Electric Field penetrates into cavities in the conductors

High Speed Ions

\[r = \frac{p}{eB} \text{ so } r \propto B \]

1st Gap Problem

Ion starts from zero velocity - can it gain enough energy in first gap before voltage changes sign?

antaya@psfc.mit.edu / (617) 253-8155
For Example: Initial Proton trajectories at 9T
Positive Ion Source must be compact

- Straight-forward field scaling of original 5.5 T ion source of K500 cyclotron
- Chimney diameter 3 mm
- Test ion source has extra support across median plane
- Allows separated cathode geometry of Antaya thesis or Harper cyclotron
- Pulsed cathode lifetime expected to be months
RF Acceleration Challenge

What is the minimum average gap and how much voltage will such a vacuum gap hold?

magnetic fields concentrate spark energy

\[r = \frac{p}{Be} \]

Voltage change requires

surface current & heating

\[i \propto C V_0 \omega_{RF} \]

Stored Charge dumps into spark

\[E = \frac{1}{2} C V_0^2 \text{ & } C \sim \frac{A_{exc}}{\text{gap}} \]
Beam Extraction Challenge

nuR
nuZ^2
rigidity

nur=2nuz @ r=0.298 m
Orbit Separation impacts Extraction

- **Turn Number**
 - Let E_1 be the energy gain per revolution
 - Then the total number of revolutions required to reach a final kinetic energy T:
 - Let the average ion phase when crossing the acceleration gap phase be ϕ; V_0 is the peak voltage on the dee
 - Energy gain per gap crossing: $T_1 = V_0 \sin \phi$
 - Gaps per revolution: n
 - Turn number: $N = T / nT_1 = T / (nV_0 \sin \phi)$
 - 250 MeV protons; 17 KeV/turn: $N \approx 15,000$

- **Turn Spacing**:
 - $dr/dN \approx r(T_1 / T)$
 - 250 MeV protons $r=0.3$ m: $dr/dN \approx 20$ microns!
Beam Extraction: 5 micron orbit turn spacing to 1 cm in 20 orbit revolutions induced by field perturbation.
Phase Stable Acceleration aka Phase Stability

- **3 General Requirements:**
 - The required instantaneous acceleration voltage is less than the maximum available voltage.
 - A change in ion momentum results in a change in ion orbit rotation period.
 - The rate of change of the frequency is less than a limiting critical value.

- **Second Condition is the most easily accessible:**

\[
\frac{d\tau}{\tau} = \left(\frac{1}{\alpha} - \frac{1}{\gamma^2} \right) \frac{dp}{p}
\]
Acceleration in a 9T Guide Field
Cyclotrons— Final Energy Scaling with Field and Radius

(The origin of Superconducting Cyclotrons and Synchrocyclotrons)
Cyclotron Energy Scales inversely with Field

- The final energy can be written as a power series expansion in the relativistic factor γ,

- The first term in this expansion is: $T_{\text{final}} \approx K_B Q^2 / A$, for an ion of charge Qe and ion mass $A m_0$.

- K_B represents the equivalent proton final energy for the machine, and is related to the ion momentum a.k.a. the particle rigidity ($B\rho$):

$$K_B = (eB\rho)^2 / 2m_0$$
Almost (but not quite) spherical: Efficient cyclotron magnetic circuits include more iron laterally than axially
Radius and Field Scaling for Fixed Energy

<table>
<thead>
<tr>
<th>B (T)</th>
<th>$r_{\text{extraction}}$ (m)</th>
<th>$(r_1/r)^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.28</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0.76</td>
<td>1/27</td>
</tr>
<tr>
<td>5</td>
<td>0.46</td>
<td>1/125</td>
</tr>
<tr>
<td>7</td>
<td>0.33</td>
<td>1/343</td>
</tr>
<tr>
<td>9</td>
<td>0.25</td>
<td>1/729</td>
</tr>
</tbody>
</table>
Classical Cyclotrons– Energy Limit

- Historically- \(E<25 \text{ MeV} \), and high acceleration voltages were required

- WHY?
 - Relativistic mass increase lowers the ion orbital frequency:
 \[\omega = \frac{qB}{\gamma m_0} \]
 - Ion frequency relative to the fixed RF frequency decreases (rotation time \(\tau \) increases)
 - Ions arrive increasing late with respect to the RF voltage on the dee
 - Eventually crossing the gaps at wrong phase and decelerates

- **21 MeV proton**: \(\gamma_{\text{final}} = 1.022 \) seems small, but...
 - Angular rotation slip near full energy
 \[\frac{d\phi}{dn} = 360^\circ \Delta \omega / \omega = 360^\circ \left[\frac{mB_0/m_0B - 1}{B - 1} \right] \approx 360\left[\gamma - 1 \right] \rightarrow 8^\circ \]
 - An ion on peak phase is lost in 11 revolutions
 - Only solution– very high energy gain per turn - 360kV was required to reach 21 MeV in the LBL 60” Cyclotron!