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Deriving the equation of motion

Consider motion in the horizontal plane along the s direction

Recall that for a particle passing through a B field with

gradient B' the slope of the trajectory changes by

or

Taking the limit as s 0,

This missed the effects of dipole focusing

 x =
s

= s
eBy

p
= s

e  B y x

p
= s

 B y x

(B )

 x 

s
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 B y
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  x +
 B y
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Let’s do this more carefully, step-by-step

R = rˆ x + yˆ y     where r + x

 v B = vsBy
ˆ x + vsBx

ˆ y + (vxBy vyBx )ˆ s ( )

The equation of motion is 

Assume Bs = 0; then

dp
dt

=
d( mv)
dt

= e v B

The magnetic field cannot change 

  
dp
dt

= m˙ ̇ R = e v B

where



US Particle Accelerator School

Express R in orbit coordinates

˙ R =
d

dt
rˆ x + yˆ y ( ) = ˙ r ̂  x + rˆ ˙ x + ˙ y ̂  y 

With    ˆ ˙ x = ˙   ˆ s     where ˙  =
vs
r

˙ ̇ R = ˙ ̇ r ̂  x + (2˙ r ̇   + r ˙ ̇  )ˆ s + r ˙  ̂  ˙ s + ˙ ̇ y ̂  y 

Since    ˆ ˙ s = ˙  ̂  x 

˙ ̇ R = (˙ ̇ r r ˙  2) ˆ x + (2˙ r ˙  + r ˙ ̇  )ˆ s + ˙ ̇ y ̂  y 

 Recall that    v B = vsBy
ˆ x + vsBx

ˆ y + (vxBy vyBx )ˆ s ( )

dp
dt

 

 
 

 

 
 
x

= m ˙ ̇ R ( )
x

= e v B( )x (˙ ̇ r r ˙  2) =
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m
=

vs
2By
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In paraxial beams vs>>vx>>vy

(˙ ̇ r r ˙  2) =
vsBy

m
=

vs
2By

mvs

vs
2By

p
d

dt
=
ds

dt

d

ds

ds = d = vsdt r
       

Change the independent variable to s

    Assuming that 
d2s

dt 2 = 0      

d2

dt 2 =
ds

dt
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This general equation is non-linear

Simplify by restricting analysis to fields that are linear in x

and y

Perfect dipoles & perfect quadrupoles

Recall the description of quadrupoles

Curl B = 0 ==> the mixed partial derivatives are equal ==>

B = Bx
ˆ x + By

ˆ y = Bx (0,0) +
Bx

y
y +

Bx

x
x

 

 
 

 

 
 ̂  x + By (0,0) +

By

x
x +

By

y
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ds2
+
1
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+
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The linearized equation matches the Hill’s

equation that we wrote by inspection

A similar analysis can be done for motion in the vertical

plane

The centripital terms will be absent as unless there are

(unusual) bends in the vertical plane

We will look at two methods of solution

Piecewise linear solutions

Closed form solutions

  x k(s)
1

(s)2

 

 
 

 

 
 x =

1

(s)

p

p
 

  y + k(s)y = 0
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The method of piecewise solutions

Harmonic oscillator with a position dependent spring

constant

Inside a given magnetic element K(s) is a constant

(isomagnetic approximation)

==> Use simple harmonic oscillator solutions for each

element and piece together the solutions at the interfaces

  x + K(s)x = 0
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Piecewise solutions

There are only 3 cases to consider

1. K = 0

2. K > 0

3. K < 0

Case 1: the transport of a beam through a drift space l

x

 x 

 

 
 

 

 
 
out

=
1 l

0 1

 

 
 

 

 
  

x0

 x 0

 

 
 

 

 
 
in

x = x0 + l  x 0
 x =  x 0

Md
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Case 2: K is positive - thin lens

Compute x' by integrating Hill’ equation through the lens

From the figure K s = 1/f   ==>

0 +0 -

 x =
d

ds

dx

ds
+ Kx

 

  
 

  
0

0+

 ds     x = Kx s

M lens =
1 0

1/ f 1
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More generally for a lens of finite length

The solution is that of a simple harmonic oscillator

For K < 0 the solution is

For the thin lens, let l 0 keeping Kl finite and 1/f

x

 x 
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cos 
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K
sin 

Ksin cos 
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Piecewise solution for the entire  ring

Suppose the ring is made of a number, m, of piecewise

modules each described by Mi

Then the transport through the ring is described by

M = MmMm-1..M1

xout = M xin

 Subject to  the stability condition

-1  1/2 Trace M  1

Recall that Trace M = 2 cos 

where  = phase advance per cell

M2
M3

M…

M…

M…Mm-1

Mm

M1
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Exercise: FODO transport channel

d d dd

f ff-f -f

Etc.

Show that for stability sin
μ

2
=
d

2 f
    f > L /2

FODO cell

Hint: compute for single FODO cell
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Both equations of motion have the

same general form

Harmonic oscillator with a position dependent spring

constant

We can guess that the solution will have the general form

where A(s) and (s) are non-linear functions of s with the

same periodicity as the lattice

Rewrite A(s) as in terms of a function ß and a constant 

  x + K(s)x = 0

x = A(s)cos (s) + o( )

x = (s) cos (s) + o( )

where  K(s) =
ec

Eo

dB

dy
= K(s+ L)
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Insert the trial solution into Hill’s equation

The derivatives of x are

 x = (s)   (s)sin (s) + o[ ] +
  (s)
2
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cos (s) + o[ ]

  x = (s)   (s)( )
2
cos (s) + o[ ] (s)    (s)sin (s) + o[ ]
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To obtain…

  x + K(s)x = (s)   (s)( )
2
cos (s) + o[ ]

  (s)( )
2

4

 

 
 
 

 

 
 
 3(s)

cos (s) + o[ ]  

                   +
   (s)
2

 

 
 

 

 
 

(s)
cos (s) + o[ ] + K(s) (s) cos (s) + o( )

                    (s)
(s)

  (s)sin (s) + o[ ] (s)    (s)sin (s) + o[ ]

                  = 0
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For Hill’s equation to hold, coefficients of

sin & cos must both equal zero

    x =
(s)

sin (s) + o[ ] +
  (s)

2

 

 
 

 

 
 

(s)
cos (s) + o[ ]
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  (s)

2

 

 
 

 

 
 

(s)
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Now consider the cos term

(s)   (s)( )
2   (s)( )

2
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equation
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The solutions ==> Phase space ellipse

Where (s) = 0

The area  is a an invariant of the motion

x = (s) cos (s) + o( )

  x =
(s)

sin (s) + o[ ] +
  (s)

2

 

 
 

 

 
 

(s)
cos (s) + o[ ]

=0

(s)

(s)

x´

x
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Particles with different  have

different ellipses

We return to our original picture of the phase space ellipse &

the emittance of a set of (quasi-) harmonic oscillators

x

(s)

(s)

x´
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We see that  characterizes the beam while
(s) characterizes the machine optics

(s) sets the physical aperture of the accelerator because

the beam size scales as x (s) = x x (s)
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Betatron oscillations

We can consider (s) to be the local wavelength of the

transverse oscillations

For a constant gradient machine (s) = constant.

The particle with maximum excursion has initial phase o;

After 1 turn, the particle will have a change in phase

It will have been around the phase ellipse 2 /  times

The number of such betatron oscillations per turn is

x = (s) cos (s) + o( )

= 0 =    ds =
ds 2 R

Q =
2

=
R

  

It will be important that Q m/n with m or n small
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Look again at the closed solutions for
periodic transport

Linear motion from  points 1 to 2 is described by a matrix:

We found that

 Trace two rays: 1 = 0 and 1 = /2 to generate equations

for a, b, c, & d

y = (s) cos (s) + o( )

and     y =
(s)

sin (s) + o[ ] +
  (s)

2

 

 
 

 

 
 

(s)
cos (s) + o[ ]

  

y s2( )

y' s2( )

 

 
 

 

 
 =

a b

c d
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 = M12
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  .
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Solving for the matrix elements…

In terms of                     and

 In one period

And M12 reduces to

  = 2 1

  

M12 =

w2

w1
 cos w2w1

'  sin  , w1w2 sin 

1+ w1w1
'w2w2

'

w1w2
 sin 
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'
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w2
'
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  w =

w1 = w2 = w ,   w 1 =  w 2 =  w  ,  μ = 2 1 = 2 Q

  

M =

 cos μ ww '  sin μ  , w2 sin μ
1 + w2w '2

w2  sin μ , cos μ + ww'  sin μ
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Twiss parameters revisited

M12 can be simplified by introducing “Twiss” parameters

Which yields the matrix for period (or ring)

where  is the phase advance

= w2  ,  =
1
2

   ,  =
1+ 2

M period =
 cos μ +  sin μ  ,  sin μ

 sin μ, cos μ   sin μ
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Physical meaning of Twiss parameters



US Particle Accelerator School

Phase advance around the ring

As the beam moves along the ring its betatron phase will

change by

In a single turn

Define the betatron tune as

= 2 1 =    ds
s1

s2

=  
ds

(s)s1

s2

= 0 =    ds =
ds

Q (or ) =
1

2

ds

(s)
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Betatron tune

Tune is the number of oscillations that a particle makes

about the design trajectory

Design orbit

On-momentum

particle trajectory
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Average description of the motion

Define an average betatron number for the ring by

The “gross radius” R of the ring is defined by

2  R = L

“Good” values for n

 Small n ==> small vacuum pipe but large tune

In interaction regions Small n raises luminosity, L

 For undulators choose n  2 Lu

Field errors ==> displacements ~ n

  

1

n

1

L

ds

(s)
=

2 Q

L
       and     n = 2 o
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Beam emittance & physical aperture

In electron & most proton storage rings, the transverse

distribution of particles is Gaussian

For a beam in equilibrium, n(x) is stationary in t at fixed s

The fraction of particles F within a radius a is

n(r)rdrd =
1

2 2 e
r 2 / 2 2

drd    for a round beam

  

F =
0

2

nr dr d
0

a

=
1

2 e
r 2 / 2 2

r dr a2

0

a

= 2 2 ln 1 F( )

or

=
2 2

ln 1 F( )
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Values of F associated with  definitions

956 2/

874 2/

392/

152/

F(%)

Electron community

Proton community

Proton community

Not surprisingly, 12  is typically chosen as a vacuum pipe radius
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Measuring the tune

Measurement of Q by kicking

Fire a kicker magnet with a pulse lasting less than one turn

Observe oscillations of centre of charge as it passes a pick-up on

sequential turns
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Measurement of Q by kicking

A beam consisting of one short bunch is a Fourier series

The pick-up sees the oscillation y(t) = y0 cos 2 f0Qt

modulated by (t)

The signal envelope is the slowest term in which (n-Q) is

the fractional part of Q

The other terms in the series reconstruct the spikes in the

signal occurring once per turn.

(t) = an
n

sin(2 nfot)

(t)y(t) =
1

2
an

n

yo sin2 (n +Q) fot + sin2 (n Q) fot[ ]


