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Diagnostic Techniques and Considerations in Pulsed Power I Ul
Systems uhé

* Grounding
— Proper grounding
— Ground loops

* Voltage measurement
— Voltage divider

» Resistive
» Capacitive
» Balanced
— Commercial voltage probes
e Current measurements
— CVR
— Rogowski
— Self-integrating Rogowski
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Grounding !ﬁ"rﬁ
* Proper grounding is the single most important factor in making
accurate experimental measurements in pulsed power systems: design
it in
 kA/us X nH =V, no two points in a high dI/dt system ever have the
same potential which will induce “ground loop” currents
e Solid “earth” ground when possible

* “Single point” ground systems when possible
— Almost anything with an AC plug has a ground lead
— Safety requirements often result in additional grounds

» Use tri-axial cables instead of co-ax, outer shield can be non-current
carrying connection required for grounding/bonding
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Isolation Techniques for Ground Loops gh

Ground loop from multiple-point
grounding

CIRCUIT CIRCUIT #1 El l% #2
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Interrupting ground loop current mm

flow using transformer isolation
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Additional isolation techniques
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Common Mode Choke for Signal Cables I\hlb

.-—MAGNETIC CORE

CIRCUIT
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CIRCUIT
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Measuring High Voltage J)

High-voltage
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High-voltage
resistors

High-voltage
resistors

Vs = Vio(Rs/Rp)

Microammeter (Rs << Rp)

is = VolRp
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Figure 9.49 High-voltage measurements with resistor strings. (a) Resistive shunt. (b) Resistive
divider.
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Figure 9.51 Effect of stray il shunt capacil
voltage divider.
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High voltage resistor strings are used to
make HV measurements

— Resistive shunts

— Resistive dividers
Parasitic effects (illustrated in Fig 9.51)
can introduce waveform distortion at

higher frequencies as illustrated in Fig
9.52

Impact of parasitic elements is reduced
as resistance of string is reduced, but
dissipation and loss increases
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Figure 9.52  Waveforms from resistive voltage divider, (&) [deal output voltage from a square-pulse
input. (b) Output with significant shunt capacitance. () Output with significant series inductance.
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U
High Frequency Voltage Dividers 5[&

* Most common alternatives
— Capacitive divider
— Balanced divider

* Add capacitance to “swap” strays

* Can be done with discrete components
» Alt: physically divide resistive medium

— Water
— Thin film

* Typical design of commercial HV probes

— Inductive dividers used for dI/dt

VD5-DH |  VD15A | VD60-B
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Figure 9.53 Voltage dividers. (@) Capacitive. (b) Inductive. () Balanced voltage divider.
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Figure 9.54  Balanced voltage divider with water solution resistar.
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Scope Probes !%

» Balanced probes

— Input impedance is frequency
dependent

— Scope impedance impacts response

 Bandwidth is limited

— May be substantially less than rating,
depending on ground connection

» HYV versions require tuning to scope

* Pulsed power workhorses
— P5100: 100X, 2.5 kV, 250 MHz
— P6015: 1000X, 20 kV, 75 MHz

— P5210 (differential): 5 kV, 50 MHz,
2 kV common-mode
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Current Measurement !ﬁ%

« Current viewing resistor
— V=IR
* Time changing induced magnetic field, dB/dt

— B-dot loop
« V=NA dB/dt
— Colil of area, A, with N turns
« V=NAB/RC
— Passive RC integrator
 Calibration difficult, function of source and loop
— Location
— Size
— Orientation
— Rogowski coil
* Encloses current source

* Eliminates location/orientation calibration factors
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Rogowski Coil Ij%

» Usual “air core” approximation,
diamagnetic field of loop is negligible

~ B.=B
B(r) = 2np
« V=NA dB/dt
= LA(N/2np) dI/dt __ | _
= LA(N/C) dI/dt . “"‘/ -
= LA(N/O)I/RC (with RC integrator) | * g
€ 1s coil length

Toroidal mandrel

N/L 1s number of turns/meter
* (Can be built in the lab

— Calibration challenges: accurately
measuring A and N/¢

— Signal attenuation from passive RC
integrator yields small signals unless |
very large or time constant short

« Commercially available
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Self-integrating Rogowski I\!’%
* More rigorously, the field B, in Fig 9.58

B. =B - (N/2mp)

where 1 1s the current flowing in the coil

1=NA (dB/dt)/R

* Combining the above and solving for B

B =B, + (dB/dt) (uUN?A/2npR)

= B. + (dB/dt) (L/R) 1inserting the identity for a solenoid inductor

*  When the time constant L/R 1is large compared to the time scale of current
variations: (d/dt) (L/R) >> 1, then the left term above can be neglected and:

B = (dB/dt) (uUN?A/2mpR)
* Recognizing B = pl/2np and solving for dB,/dt as a function of coil current
1=1/N
« Typically, L is made large by using a ferrite core

e (Commercial current transformer
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