

Pulsed Power Engineering Diagnostics

January 12-16, 2009

Craig Burkhart, PhD Power Conversion Department SLAC National Accelerator Laboratory

Diagnostic Techniques and Considerations in Pulsed Power Systems

- Grounding •
 - Proper grounding
 - Ground loops
- Voltage measurement ٠
 - Voltage divider
 - Resistive
 - Capacitive
 - Balanced
 - Commercial voltage probes
- Current measurements ٠
 - CVR
 - Rogowski
 - Self-integrating Rogowski _

Grounding

- Proper grounding is the single most important factor in making accurate experimental measurements in pulsed power systems: design it in
- $kA/\mu s X nH = V$, no two points in a high dI/dt system ever have the same potential which will induce "ground loop" currents
- Solid "earth" ground when possible
- "Single point" ground systems when possible
 - Almost anything with an AC plug has a ground lead
 - Safety requirements often result in additional grounds
- Use tri-axial cables instead of co-ax, outer shield can be non-current carrying connection required for grounding/bonding

January 12-16, 2009 USPAS Pulsed Power Engineering C Burkhart

Power Conversion Solutions for Challenging Problems

Ground Loop

Isolation Techniques for Ground Loops

Ground loop from multiple-point grounding

Interrupting ground loop current flow using transformer isolation

Additional isolation techniques

January 12-16, 2009 USPAS Pulsed Power Engineering TTU/Burkhart

Common Mode Choke for Signal Cables

January 12-16, 2009 USPAS Pulsed Power Engineering TTU/Burkhart

6

Measuring High Voltage

Figure 9.49 High-voltage measurements with resistor strings. (a) Resistive shunt. (b) Resistive divider.

Figure 9.51 Effect of stray capacitance, shunt capacitance, and series inductance on resistive voltage divider.

January 12-16, 2009

- High voltage resistor strings are used to make HV measurements
 - Resistive shunts
 - Resistive dividers
- Parasitic effects (illustrated in Fig 9.51) can introduce waveform distortion at higher frequencies as illustrated in Fig 9.52
- Impact of parasitic elements is reduced as resistance of string is reduced, but dissipation and loss increases

7 **Power Conversion** Solutions for Challenging Problems

USPAS Pulsed Power Engineering Humphries/Burkhart

High Frequency Voltage Dividers

- Most common alternatives
 - Capacitive divider
 - Balanced divider
 - Add capacitance to "swap" strays
 - Can be done with discrete components
 - Alt: physically divide resistive medium
 - Water
 - Thin film
 - Typical design of commercial HV probes
 - Inductive dividers used for dI/dt

Figure 9.53 Voltage dividers. (a) Capacitive. (b) Inductive. (c) Balanced voltage divider.

January 12-16, 2009

USPAS Pulsed Power Engineering Humphries/Burkhart

Scope Probes

- Balanced probes
 - Input impedance is frequency dependent
 - Scope impedance impacts response
- Bandwidth is limited
 - May be substantially less than rating, depending on ground connection
- HV versions require tuning to scope
- Pulsed power workhorses
 - P5100: 100X, 2.5 kV, 250 MHz
 - P6015: 1000X, 20 kV, 75 MHz
 - P5210 (differential): 5 kV, 50 MHz, 2 kV common-mode

January 12-16, 2009

USPAS Pulsed Power Engineering C Burkhart

Fower Conversion Solutions for Challenging Problems

9

Current Measurement

• Current viewing resistor

- V = IR

- Time changing induced magnetic field, dB/dt
 - B-dot loop
 - V = NA dB/dt
 - Coil of area, A, with N turns
 - V = NAB/RC
 - Passive RC integrator
 - Calibration difficult, function of source and loop
 - Location
 - Size
 - Orientation
 - Rogowski coil
 - Encloses current source
 - Eliminates location/orientation calibration factors

10

Rogowski Coil

- Usual "air core" approximation, diamagnetic field of loop is negligible
 - $-B_i = B$
- $B(r) = \mu I/2\pi\rho$
- V = NA dB/dt
 - = $\mu A(N/2\pi\rho) dI/dt$
 - $= \mu A(N/\ell) dI/dt$
 - = $\mu A(N/\ell)I/RC$ (with RC integrator)
 - ℓ is coil length

 N/ℓ is number of turns/meter

- Can be built in the lab
 - Calibration challenges: accurately measuring A and N/ℓ
 - Signal attenuation from passive RC integrator yields small signals unless I very large or time constant short
- Commercially available

January 12-16, 2009

USPAS Pulsed Power Engineering Humphries/Burkhart

Self-integrating Rogowski

- More rigorously, the field B_i , in Fig 9.58 $B_i = B - \mu i (N/2\pi\rho)$ where i is the current flowing in the coil $i = NA (dB_i/dt)/R$
- Combining the above and solving for B

 $B = B_i + (dB_i/dt) (\mu N^2 A/2\pi\rho R)$

- = B_i + (dB_i/dt) (L/R) inserting the identity for a solenoid inductor
- When the time constant L/R is large compared to the time scale of current variations: (d/dt) (L/R) >> 1, then the left term above can be neglected and: B $\approx (dB_i/dt) (\mu N^2 A/2\pi\rho R)$
- Recognizing $B = \mu I/2\pi\rho$ and solving for dB_i/dt as a function of coil current i = I/N
- Typically, L is made large by using a ferrite core
- Commercial current transformer

January 12-16, 2009 USPAS Pulsed Power Engineering C Bu

12

ower Conver