Optical and x-ray streak
cameras for pulse length
measurement
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Overview

* Introduction to x-ray streak cameras
* Applications of X-ray SC

 ALS SC R&D program

» Start-to-end SC model

* Future improvements
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Principle of the Streak Camera
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= Compare streak camera to gated camera:

ol the phosphor scrasn.

= Light—>Photocathode— Electrons—>MCP—Screen—CCD as before, but...
= Remove: Vertical spatial information, with a tight focus and a thin slit.
« Add: Accelerating electrode after the photocathode

Fast vertical sweep in drift space

before the MCP

Vertical coordinate now displays the arrival time of the photons.
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= Single bunch in the LER
(low-energy ring) of PEP-II

= Projection along the vertical
axis gives the profile in
time.

« Beam fits an asymmetric
Gaussian (faster rise than fall)

e _ « Studied variation with ring
A current and RF voltage.
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Focus Mode: Effect of finite spot size

= A big spot with the sweep off degrades
time resolution.

= Once sweep is on, source’s height and
time spread will mix.

= Check setup in Focus Mode.
= Use a narrow entrance slit.
= Typically 10 to 30 um

= With sweep off, focus all optics, both
external and within the camera, to get
the smallest spot on the CCD.

| £ oo = Measure RMS spot size in pixels.
| = Correct streak data for resolution.
=« Convert pixels to time scale of streak.

) = Subtract resolution in quadrature from
| beam’s measured RMS length.
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Signal/Noise

= How much light?

= Too little gives shot noise and more error in the fit, as
shown 1n the previous single-bunch streak image.

= Too much:

« Space charge between the photocathode and the MCP spreads out
the electron pulse, broadening the measured temporal profile

« Damage to the photocathode, MCP, and phosphor screen.

« Warning! The screen is easily damaged in Focus Mode, since
without the sweep, the light is concentrated in a small spot.
Always attenuate the light heavily (~ 40 dB, also called an optical
density of 4) before opening the shutter in Focus Mode.

= The best time resolution is found with visible noise in the
image. Optimize by varying the attenuation and MCP gain.

6
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Timing Jitter

= One cure for noise is to add images from several
measurements.

= But if the sweep time is not fixed relative to the beam, the
sum will be broader than any one fit.

» Jitter in sweep (~ 20 ps) can be close to bunch length.
=« Jitter in trigger can be worse: DG535 has 50 ps.
= And any synchrotron oscillation will add to this spread.

= First find the mean of the time profile of each image,
and then overlap them at their means.

7
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Synchroscan

= For stable bunches stored in a ring, there 1s an
alternative way to beat noise.

= Since the bunch is locked to the ring’s RF, an RF sine
wave can sweep the beam without jitter.

= Want only the linear part of the sine, near the zero crossing.
= Good for sweeps spanning short time scales: Az ... << 1/f ..,

sweep
= Deflection plates incorporated in a high-Q resonator tuned
t0 foweep tO get enough field to sweep the full MCP in At

sweep
= Upper limit to drive frequency for the resonator

* foveep< 125 MHz for our Hamamatsu C5680

« Low compared to typical ring RF: f,.= 500 MHz

« PEP-II and SPEAR-3 use f;. = 476 MHz, and so our camera uses a
subharmonic: f .. =476/4=119 MHz

sweep

8
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Etalon calibration

= Etalon: two parallel,
partially reflective surfaces

= We use a fused silica window,

L=15.00 mm thick. Both sides
have reflectivity R=1-T'= 0.5.

s Insert near streak camera.

= Main peak is reduced by 72.

= Internal reflection produces a
7 series of echoes

: = Each smaller by factors of R?
« Each delayed by nL/c

= n 18 the index of refraction
(~1.5) at the wavelength used

= Fit to series of delayed
Gaussians to calibrate ps/pixel

Pizek: 9
9
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Dual-sweep synchroscan

= Horizontal axis has interesting spatial information.
= Reveals xt (or yf) coupling: head-tail instability.
= But what if the instability changes along a bunch train
or over several turns?
= Add a second set of plates to sweep the beam horizontally.
» This deflection is slow, spanning ns, us, or even ms.

= Makes a stripe of consecutive bunches.

« Like the rotating mirror, but on a faster time scale, and displaying
longitudinal rather than transverse behavior.

10
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Single bunch with synchroscan I

()
(LA 1N

= Less noise in this image and
profile than in single sweep.

s CCD accumulates signal
over many sweeps (ms), and
so the space charge is low.

= Bright image without
broadening or risk of damage.

| % | q s Direction of time in the

& i | image depends on the sine

= § 1 phase as the light arrives.

%: ; ’; | = Sine sweeps up and down.

- ‘ L— | c C'amer'a remain§ on, capturing
:r""""—""“‘) - ' P | signal in both directions.
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ALS study of longitudinal beam dynamics at injecti

John Byrd
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J. M. Byrd and S. De Santis, “Longitudinal injection transients in an electron storage ring,” Phys. Rev. ST AB 4, 024401(2001)
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Synchro-betatron coupled motion - 1

John Byrd

Excited Head-Tail Oscillation

« Synchro-betatron coupled motion excited by a
transverse kicker

 The motion has major contribution to decoherence of
betatron motion

 Proposal by Weiming Guo to generate ps x-ray pulse.
To date, we have produced 6 ps photon bunch from 25
ps electron bunches.

TAIL HEAD

— Turn 0 Turn 30 Turn 60 Turn 80 Turn 120

- — — 13
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Imaging In the longitudinal phase space

John Byrd

On streak camera monitor, the location
of an electron’s image point is given by

X=x5+N0
Y= yﬂ + Vstreakt

At a highly dispersive section, using a
fast sweep, the energy and time terms
dominate in the expressions, and we
have an approximate longitudinal phase
space map.

In linac, such map can be obtained at
the spectrometer.
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J. Ronsch, et al, “Longitudinal phase space studies at PITZ,” FEL’05, p 552. 14
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ALS x-ray streak camera development I,s

i

John Byrd

H. Padmore, J. Feng, T. Young, A. Scholl , J.
Nasiatka, A. Comin, A. Bartelt - ESG /ALS

W. Wan - Accelerator Physics Group /ALS

J. Byrd, J. Qiang, G. Huang — Center for Beam
Physics /AFRD

R. Falcone (UCB/ALS)

K. Opachich (USD) / ESG, M. Greaves (UCB) / ESG
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ALS X-ray streak camera

John Byrd
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microchannel plates and
imaging CCD

Photocathode / slit

Meander strip line 3 S _ :
Photoconductive GaAs switch for triggering 17
17
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Motivation: Ultrafast magnetization

dynamics

John Byrd

[ « IV PN ‘

What mechanisms and timescales are

involved in ultrafast magnetization?
- using a laser field, using external
magnetic field, using spin injection

Can we engineer new materials for
ultrafast control of magnetization

- control by electric fields — eg.
multiferroic materials

How does energy flow in a magnetic
system when changing the
magnetization?

- how is energy coupled from the field to
the spin system to the lattice

| |
Time
thermal activation

10°s  1ns ‘\

[ TUVU TITTT

o
=

100 ps - spin precession 1
and damping /%
H =1 Tesla L \}f—{'} )
=7
10 ps - s
-12
10 s 1ps
l
%)1 s Spin-orbit
100 fs | . ?.),5/9—» coupling
Magnetic

- psec temporal resolution

The Key Tool:Time-Resolved X-ray Magnetic Circular Dichroism

- can be allied with x-ray microscopy
- gives us information per element in a multi-element system
- gives us spin and orbital magnetic moments

16
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FeGd sample, Fe edge

difference

time

time

Total demagnetization within few ps!

19

time
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John Byrd

Laser,UV

X-ray

CCD camera .
magnet for transmission

field reversal sample 20
20
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Laser optics
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Streak camera || A

Photoswitch
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Iaser room
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- IR pump beam

- IR to streak camera PC switch trigger 23
- uv for temporal fiducial to photocathode 23

- uv for timescale calibration to photocathode _

X-rays

sample
chamber




Why are we involved?

« Streak cameras are DC photoguns

—fundamental limitations of streak cameras similar to
those of RF PC guns

—interesting beam dynamics
 Still room for improvement

—ultimate resolution limited by time response of
photocathode

—standard accelerator modeling tools highly relevant:
magnetic optics, RF and microwave design, space
charge dynamics. Detector groups typically do not
have access or expertise to these tools.

—common design approach is to daisy-chain
approximations

 Direct collaboration with beamline users

 Lots of fun! 2
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Streak camera issues

John Byrd

« Ballistic expansion from energy spread at
photocathode

—reduced by higher voltage accelerating gaps
—space charge increases energy spread
« Maximize streak speed (slope of angular deflection)
—transmission of fast pulse
—effective beam voltage
—synchronization of deflection pulse with source
* High resolution imaging of electron beam
—avoid aberrations from solenoid
—minimize chromatic effects
—efficiently detect electrons
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Developed in MAFIA environment

Photocathode-anode
— User-defined initial SE distribution
— Velocity dispersion
— PIC space charge (not working)
Deflector

— Full 3D time-dependent EM field
representation

— User-defined input pulse
Focussing system

— 3D field map for magnetic or electric
focussing

— Lens aberrations included .
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Streak camera resolution is proportional to time gradient of vertical
deflection. How fast can we deflect the beam?

ALS SC design incorporated meander line stripline to match kick
pulse with beam velocity, increasing efficienc

Transmission

Frequency / GHz

300F T T T |m| T =

2ol Input pulse

100

=

-100

Deflecting Voltage (V)

Output pulse

-200

23001 ! | !
04 0.2 0.0 02 04 0.6

Time (nsec)

Effective slope reduced for sub-100 psec
risetime input pulse. Linearity is also
compromised. Solution calls for broader

bandwidth structure or resonant cavity.
27
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+ + + +
eflector side view (static and dynamic)

MAFIA off-axis E, profile (top view)

Deflector design options:
larger gap meander
dielectric-loaded stripline
sresonant cavity
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Start-to-end SC Simulation
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Experimental Results M

World Record: 1000shots, 233fs 10/19/2006, 9:

CCD Image with
1000 shots

Submitted to App. Phys. Lett.

World record resolution for SC.
Low trigger jitter
SC model points the way to better results! 30

30
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Future directions

Photocathode

—understand physics of secondary electrons angular and energy
spread; engineered PC?

Ballistic expansion
—higher extraction voltage
—REF extraction
—time-of-flight correction optics
Sweep speed
—engineered photoswitch
—REF deflector (l.e. synchroscan)
Detection and imaging
—take advantage of high rep rate x-ray source (~500 MHz)

—RF deflector synchronized with MO for accumulation (l.e.
synchroscan) fast image readout

—higher resolution CCDs
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PC002, 9.5keV Vs=450,vb=130,1Khz
T I I
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Accumulation (shots)

No jitter allows accumulation of images and
more signal integrated between CCD
readouts

sImprove time response of photoswitch
sImprove laser/ring synchronization

-Use resonant deflection (l.e. synchroscan)”
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- shift data to keep at constant detector position

- camera readout at sweep frequency (5 KHz) 33
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- using c-plates + cmos camera + FPGA compressor + video processor
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Photocathode has negative time dispersion
Au,Wf=4.6ev, FWHM=3.8ev, 10kV/mm field,

34
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- anode cathode: negative energy dependent time of flight dispersion
- ie. low energy electrons take the longest time
- corrector gives positive energy dependent time of flight dispersion

- low energy electrons take the shortest path and therefore take the shortest time

- symmetric 256 degree
system need for field
aberration cancellation

- fringe fields between
halves mess up the
imaging properties

35

Double Cylindrical TOF corrector

35
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Delta function temporal response
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Application to FELs

« Timing information is critical for next gen FELs

* Most timing diagnostics operate on e-beam

« Diagnostics needed for arrival time of x-ray pulse
 However...

—resolution of best existing cameras does not

appear suited for short pulses produced by
FEL

 However...

—timing information does not need to resolve
pulse structure but simply pulse centroid

38
38
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Ahmet Yildiz," Joseph N. Forkey,® Sean A. McKinney, -2
Taekjip Ha,"? Yale E. Goldman,® Paul R. Selvin2*

Shot noise limited

- 1e4 electrons, 4 pixels / 1 sigma 1
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| to timing slit 2222
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space charge limit set by anode to deflector transit
-potential energy transfer to longitudinal velocity
- correlated energy spread

- solution high energy, short transit to deflector

-using accelerator modeling codes to optimize effect:

Astra, Parmela, Impact

-Trying to incorporate Barnes-Hut model into s2e
model
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Streak image
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« X-ray streak cameras very useful for studying psec phenomena
—relevant for sub-psec studies for storage rings

— potential as x-ray timing diagnostic for FELs with <100 fsec
centroid resolution

 ALS x-ray streak camera development
—ALS streak camera demonstrated 230 fsec resolution

— start-to-end model of camera shows good agreement with
measurements

—indicates limitations on performance
« possible improvements
— higher extraction gradients; RF acceleration?
— faster, stronger deflection; RF deflection!
— better synchronization (storage rings) for image accumulation

41
41
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