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A FROG Is a spectrogram. Ig’

i

If E(¢) is the waveform of interest, its spectrogram is:

2. (0,7) = on E(t) g(t—7) exp(—iwt) dt

where g(z-7) is a variable-delay gate function and tis the delay.

Without g(7-7), Z.(®,7) would simply be the spectrum.

The spectrogram is a function of wand 7.
It is the set of spectra of all temporal slices of E(¢).
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The Spectrogram of a waveform E(7) I\q’fs
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piece of E(¢),
centered at t.
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Algorithms exist to retrieve E(¢) from its spectrogram.

The spectrogram essentially uniquely determines the waveform intensity, /
(t), and phase, ().

There are a few ambiguities, but they’re “trivial.”

The gate need not be—and should not be—much shorter than E(7).
Suppose we use a delta-function gate pulse:

/

j " E(t) 8(t—1) exp(—iar) dt

2

= | E(7) exp(—io7)| ’

2
= ‘E(T)‘ = The Intensity.
No phase information!

The spectrogram resolves the dilemma! It doesn’t need the shorter

event! It temporally resolves the slow components and spectrally
resolves the fast components.
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o
Frequency-Resolved Optical Gating (FRO f}}s
\UAA A

FROG involves gating the pulse with a variably delayed replica of
itself in an instantaneous nonlinear-optical medium and then
spectrally resolving the gated pulse vs. delay.

2

Pulse to be
measured

L E,(1,7)exp(~ioor)di

Beam SHG FROG_ is simply a spectrally resolved
splitter autocorrelation.

1 prog(@,T) =

Camera
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Variable E(?) E,;(t.0)= E()E(t-t)

delay, t

Use any ultrafast nonlinearity: Second-harmonic generation, etc.
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SHG FROG E, (t,7) = E()E(1—T) M

The gate
pulse is
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SHG FROG is also a spectrogram, but its interpretation is more complex.

Short Bunches in Accelerators— USPAS, Boston, MA 21-25 June 2010




SHG FROG Measurements of a Free-Electron Lase

Original trace Reconstructed trace
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SHG FROG works very well, even in the mid-IR and for difficult sources.
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When a known reference pulse Is available: !%]
Q

Cross-correlation FROG (XFROG

If a known pulse is available (it need not be shorter), then it can be
used to fully measure the unknown pulse. In this case, we perform
sum-frequency generation, and measure the spectrum vs. delay.

E(f) SFG crystal
Unknown pulse . O -1 [ spectro- ICamera
A I> meter n
Known E (1)
| E.(t,7) o« EQE (t-7)

2

The XFROG trace
(a spectrogram):

IXFROG(w7 T)

Jm E(t) E (t—7) exp(—iwt) dt

XFROG completely determines the intensity and phase of the unknown
pulse, provided that the gate pulse is not too long or too short.
If a reasonable known pulse exists, use XFROG, not FROG.
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Pulse to be
measured

N -

Remarkably, we can design a FROG without these components!
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The Fresnel biprism

Crossing beams at a large angle maps delay onto transverse position.

Input Pulse #1
pulse
t =t(x)
Here, pulse #1 arrives
earlier than pulse #2
Here, the pulses
arrive simultaneously
Here, pulse #1 arrives
later than pulse #2
\ Pulse #2 .

Fresnel biprism

Even better, this design is amazingly compact and easy to use, and
it never misaligns!
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The thick crystal

Suppose white light with a large divergence angle impinges on an SHG
crystal. The SH generated depends on the angle. And the angular width
of the SH beam created varies inversely with the crystal thickness.
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Very thick crystal acts like
a spectrometer! Why not replace the

Very thin crystal creates broad SH spectrum in all directions.
| Standard autocorrelators and FROGs use such crystals.

Thin crystal creates narrower SH spectrum in
a given direction and so can'’t be used

for autocorrelators or FROGs.
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GRENOUILLE Beam Geometry
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Lens images position in crystal

B (i.e., delay, t) to horizontal
position at camera
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Disadvantages of GRENOUILLE

Its low spectral resolution

limits its use to pulse \
lengths between ~ 20 fs My \ E
and ~ 1 ps. nput_, —*tf] ¢
o \ \M‘ ' be‘ey C
\ amera
Like qther sn_ngle-shot cyinica . 3 e .
techniques, it requires fens biprism YS! lenses

good spatial beam quality.

Improvements on the horizon:

Inclusion of GVD and GVM in FROG code to extend the range of
operation to shorter and longer pulses.
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Measure spectrum of SHG in
BBO vs. delay
I
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Simulated FROG results for LCLS
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¥ Reconstruction longer for undercompressed and shorter for
overcompressed bunches
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