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• Maxwell’s equations
• Wave equations
• Plane Waves
• Boundary conditions

A. Nassiri - ANL

Lecture 1- Review
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Maxwell’s Equations

The general form of the time-varying Maxwell’s 
equations can be written in differential form 
as:
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A few other fundamental relationships
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A few other fundamental relationships
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A few other fundamental relationships
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Integral form of the equations
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Wave Equations

In any problem with unknown E, D, B, H we have 12 
unknowns. To solve for these we need 12 scalar equations. 
Maxwell’s equations provide 3 each for the two curl 
equations. and 3 each for both constitutive relations (difficult 
task).

Instead we anticipate that electromagnetic fields propagate as 
waves. Thus if we can find a wave equation, we could solve it 
to find out the fields directly. 
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Wave equations

Take the curl of the first Maxwell:
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Wave Equations

The result is:
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Similarly, the same process for the second Maxwell produces 
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Note how in both case we have a wave equation (2nd order PDE) 
for both E and H with fields to the left of the = sign and sources
to the right. These two wave equations are completely equivalent
to the Maxwell equations.
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Solutions to the wave equations

Consider a region of free space (σ = 0) where there are no sources
(J = 0). The wave equations become homogeneous:
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Solutions to the wave equation

Try a solution of the form f(z-vt) e.g. sin[β(z-vt)]. By differentiating
twice and substituting back into the scalar wave equation, we find 
that it satisfies!

f(z) t=0
z

f(z-vt1) t=t1 z

f(z-vt2) t=t2 z
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Plane Waves

• First treat plane waves in free space.
• Then interaction of plane waves with media.
• We assume time harmonic case, and source free situation.
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How do we find a solution?

Usual procedure is to use Separation of Variables (SOV). 
Take one component  for example Ex.
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Mathematical Solution

We note we have 3 ODEs now. 
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But, what does it mean physically?

( )zkykxkj
x

zyxeAE ++±=
This represents the x-component of the travelling wave E-field
(like on a transmission line) which is travelling in the direction 
of the propagation vector, with Amplitude A. The direction of
propagation is given by

zkykxkk zyx ˆˆˆ ++=

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Physical interpretation

The solution represents a wave travelling in the +z direction with
velocity c. Similarly, f(z+vt) is a solution as well. This latter 
solution represents a wave travelling in the -z direction.
So generally,

( ) ( )( )( )[ ]vtzvtyvtxftzEx ±±±=,

In practice, we solve for either E or H and then obtain the
other field using the appropriate curl equation.

What about when sources are present?  Looks difficult!
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Generalize for all components

If we define the normal 3D position vector as:
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Properties of plane waves

For source free propagation we must have ∇·E = 0. If we satisfy
this requirement we must have k·E0= 0. This means that E0
is perpendicular to k.

The corresponding expression for H can be found by 
substitution of the solution for E into the ∇×E equation. The 
result is:

EnkH


×= ˆ
0

0

ωµ
Where n is a unit vector in the k direction.
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Transverse Electromagnetic (TEM) wave

Note that H is also perpendicular to k and also perpendicular to
E. This can be established from the expression for H.

E

H

Direction of propagation
k,n

Note that:

knHE ˆˆˆˆ or    =×
E and H lie on the
plane of constant
phase  (k·r = const)
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Plane waves at interfaces (normal incidence)

Consider a linearly polarized (in x-direction) wave travelling in
the +z direction with magnitude Ei

Ei

Hi

Er

Hr

Incident

Reflected

µ2ε2σ2µ1ε1σ1

Transmitted

z

x
Arbitrary
orientation!

Et

Ht



Massachusetts Institute of Technology                                RF Cavity and Components for Accelerators               26



Massachusetts Institute of Technology                                RF Cavity and Components for Accelerators               27

Metallic Boundary
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Metallic Boundary

Dielectric Metal

H

E

Skin depth
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Boundary conditions

We deal with a general dielectric interface and two special
cases. First the general case. For convenience we consider 
the boundary to be planar.

Maxwell’s equations in differential form require known boundary
values in order to have a complete and unique solution. The 
so called boundary conditions (B/C) can be derived by considering
the integral form of Maxwell’s equations.

nε1µ1σ1

ε2µ2σ2
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General case

Equivalent

Et1 nε1µ1σ1

ε2µ2σ2 Et2

Tangential E continuous

nε1µ1σ1

ε2µ2σ2 Ht2

Ht1

n x (H1-H2)=Js

nε1µ1σ1

ε2µ2σ2

Bn1

Bn2
Normal B continuous

nε1µ1σ1

ε2µ2σ2
D2n

D1n

n·(D1-D2)=ρs
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Special case (a) Lossless dielectric

nε1µ1σ1=0

ε2µ2σ2=0

Bn1=Bn2 normal B fields continuous

Ht1=Ht2 tangential H fields continuous (no current)

Dn1=Dn2             normal D fields continuous (no charge)

Et1=Et2                  tangential E fields continuous)
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Special case (b) Perfect Conductor

nε1µ1σ1=0

∞→2σ Perfect Electric Conductor   Et2=Ht2=0

Bn1= 0 Normal B(H) field is zero on conductor.

Et1= 0    Tangential Electric field on conductor is zero.

n × H1=Js    H field is discontinuous by the surface current

n . D1= ρ Normal D(E) field is discontinuous by surface charge
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Boundary conditions

Continuity at the boundary for the tangential fields requires:

(2)               
(1)                
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Plane Wave in Dispersive Media

 Recall the Maxwell’s equations:
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Plane Wave in Dispersive Media

• So far, for lossless media, we considered J=0, and ρv=0 but,
there are actually two types of current and one of them should
not be ignored.

• Total current is a sum of the Source current and Conduction 
current.
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Plane Wave in Dispersive Media

Defining complex permittivity 

ω
σ

−ε=ε j

Maxwell’s equations in a conducting media (source free) can be 
written as
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Plane Wave in Dispersive Media

We have considered so far:

Plane Waves
in Free space

Plane Waves
in Isotropic 
Dielectric

Plane Waves
in anisotropic 
Dielectric

Plane Waves
in Dissipative 
Media
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Plane Wave in Dispersive Media

Wave equation for dissipative media becomes:
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Plane Wave in Dispersive Media

Substituting into                               and                                        

yields the dispersion relation
EE


µεω−=∇ 22 HH


µεω−=∇ 22

ε
µ

=η

µεω=κ
and

22

Is the complex intrinsic impedance of the isotropic media.
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Plane Wave in Dispersive Media

Denoting the complex values:
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Plane Wave in Dispersive Media

Loss tangent is defined from

tangent loss as defined is 
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Plane Wave in Dispersive Media

Slightly lossy case: 1<<
ωε
σ

ε
µσ
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Plane Wave in Dispersive Media

Highly lossy case: 1>>
ωε
σ
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Plane Wave in Dispersive Media
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Reflection & Transmission

Similarly, substituting into (1) and (2) and eliminating Et

12

12t     coefficien Reflection
ZZ
ZZ

E
Eρ

i

r

+
−

==

We note that τ = 1+ρ, and that the values of the reflection 
and transmission are the same as occur in a transmission line
discontinuity.

Z1 Z2

τρ

Not 1-ρ
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Special case (1)

(1) Medium 1: air; Medium 2: conductor

iit
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jZZZ

22   usethen 
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+
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τ

σδ

This says that the transmitted magnetic field is almost doubled
at the boundary before it decays according to the skin depth. 
On the reflection side Hi ≈ Hr implying that almost all the
H-field is reflected forming a standing wave.
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Special case (2)

(2) Medium 1: conductor; Medium 2: air

Reversing the situation, now where the wave is incident
from the conducting side, we can show that the wave is
almost totally reflected within the conductor, but that the 
standing wave is attenuated due to the conductivity.  
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Special Case (3)

(2) Medium1: dielectric; Medium2: dielectric

2
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This result says that the reflection can be controlled by varying
the ratio of the dielectric constants. The transmission analogy
can thus be used for a quarter-wave matching device.
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λ/4 Matching Plate

Z0 Zp Z2

λ/4

Air: εr=1 Plate εr'=? Dielectric εr=4

Transmission line theory tells us that for a match

20ZZZ p =
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We will see TL lectures later
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Applications

The principle of λ/4 matching is not only confined to transmission
line problems! In fact, the same principle is used to eliminate 
reflections in many optical devices using a λ/4 coating layer on
lenses & prisms to improve light transmission efficiency.

Similarly, a half-wave section can be used as a dielectric window.
Ie. Full transparency. (Why?). In this case Z2=Z0 and the
matching section is λ/2. Such devices are used to protect antennas
from weather, ice snow, etc and are called radomes.

Note that both applications are frequency sensitive and that the
matching section is only λ/4 or λ/2 at one frequency.
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Oblique Incidence

The transmission line analogy only works for normal incidence.
When we have oblique incidence of plane waves on a dielectric 
interface the reflection and transmission characteristics become 
polarization and angle of incidence dependent.

We need to distinguish between the two different polarizations.
We do this by first, explaining what a plane of incidence is, then 
we will point out the distinguishing features of each polarization. 
We are aiming for expressions for reflection coefficients.

We note again that we are only dealing with plane waves
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Plane of Incidence

Surface
normal

Dielectric 
interface in 
x-z plane

x

y

z

Plane of incidence contains
both direction of propagation 
vector and normal vector.

Direction of
propagation
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Parallel & Perpendicular Incidence

H
E

x

E
H

x

y y

Plane of incidence is the x-y plane

E is Perpendicular to the
plane of incidence

E is Parallel to the
plane of incidence
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Perpendicular incidence

y

Hi EiEr

Hr 

x

θr θi

θtHt
Et

ε2µ2

ε1µ1
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Write math expression for fields!
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How did you get that?

Within the exponential: This tells the direction of propagation
Of the wave. E.g. for both the incident Ei and Hi

( )ii yxj θθβ cossin1 +
A component in the – x direction

Another component in the –y direction

Propagating
In medium 1

Outside the exponential tells what vector components of the field
Are present. E.g. for Hr

( )
1

0sinˆcosˆ
Z

Eyx rr
⊥+

ρθθ
+x and +y components of Hr

Perpendicular reflection
coefficient

E0/Z1 converts E to H
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Apply boundary conditions

Tangential E fields (Ez) matches at y=0
Tangential H fields (Hx) matches at y=0

( ) ( ) ( )tri xjxjxj θβτθβρθβ sinexpsinexpsinexp 211 ⊥⊥ =+

We know that τ =1+ ρ, so then the arguments of the 
exponents must be equal. Sometimes called Phase matching
in optical context. It is the same as applying the boundary
conditions.

tri jjj θβθβθβ sinsinsin 211 ==
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Snell’s laws and Fresnel coefficients

The first equation gives

and from the second using  it θ
εµ
εµθ

λ
πβ sinsin

22

11              2
==

ir θθ =

By matching the Hx components and utilizing Snell, we can 
obtain the Fresnel reflection coefficient for perpendicular 
incidence.

ti

ti

ZZ
ZZ

θθ
θθρ

coscos
coscos

12

12

+
−

=⊥



Massachusetts Institute of Technology                                RF Cavity and Components for Accelerators               59

Alternative form 

Alternatively, we can use Snell to remove the θt and write it in
terms of the incidence angle, at the same time assuming 
non-magnetic media (µ= µ0 for both media).

ii

ii

θ
ε
εθ

θ
ε
εθ

ρ
2

1

2

2

1

2

sincos

sincos

−+

−−
=⊥

Note how both forms
reduce to the transmission
line form when θi=0

This latter form is the one that is most often quoted in texts,
the previous version is more general 
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Some interesting observations

• If ε2 > ε1       Then the square root is positive,
• If ε1> ε2        i.e. the wave is incident from more dense to

less dense
AND

⊥ρ Is real

1

22

ε
εθ ≥isin

Then         is complex and   ⊥ρ 1=⊥ρ

This implies that the incident wave is totally
internally reflected (TIR) into the more dense 
medium
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Critical angle 

When the equality is satisfied we have the so-called critical
angle. In other words, if the incident angle is greater than or 
equal to the critical angle AND the incidence is from more 
dense to less dense, we have TIR. 

1

21

ε
εθ −= sinic

For θi>  θic Then                as noted previously.1=⊥ρ
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Strange results

Now 

1A  where

imaginary! is             1

!  1       since so   

2

2

1

2

21
2

1

−=

=−=

>⇒>=

i

ttt

tit

jA

θ
ε
ε

θθθ

θεεθ
ε
εθ

sin

cossincos

sinsinsin

What is the physical interpretation of these results? To see
what is happening we go back to the expression for the
transmitted field and substitute the above results.
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Transmitted field 

( )[ ]

[ ] [ ]

1 where 2

2

1
222

20

20

−==

−=

+=

⊥

⊥

i

t

ttt

Aα

yxjEz

yxjEzE

θ
ε
εεµωβ

αθβτ

θθβτ

sin

expsinexpˆ

cossinexpˆpreviously

cos θt=jA

Physically, it is apparent that the transmitted field propagates
along the surface (-x direction) but attenuates in the +y direction
This type of wave is a surface wave field
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Example

Assume:
εr = 81
σ = 0
µr = 1

Let θi = 45°
evaluate TIRicic ⇒>== °− θθθ i

1    so    386
81
1 .sin

y

air
water

Ei

Hi 

2
1 x
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Example (ctd)

°−∠=

−+

−−
+=

+=

===

+=−°±=

==

⊥

°

6.4442.1

5.0
81
1707.0

5.0
81
1707.0

1

1

/5.3928.62
28.6145sin81cos

38.645sin
1
81sin    Snell Using

00
2

2

ρτ
λλ

πβα

θ

θ

mNepA

jjt

t

This means that if
the field strength on
the surface is1Vm-1, 
then

-1Vm421.== it EE τ

Choose + sign
to allow for
attenuation
in +y direction



Massachusetts Institute of Technology                                RF Cavity and Components for Accelerators               66

Evaluate the field just above the surface

Lets evaluate the transmitted E field at λ/4 above the surface.

dB

VmEt

885
421
1027320

273
4

4939421

6

10

0

.
.

.log

..exp.

−=






 ×
=

=






−
=

−

−µλ
λ

This means that the surface wave is very tightly bound to the
surface and the power flow in the direction normal to the 
surface is zero.
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What about the factor              ?0

0

k
ωµ

0

0

00000

0 122
µ
ε

µωµ
π

ωµλ
π

ωµ
====

cc
fk

This term has the dimensions of admittance, in fact 

0

0

00
0

11
µ
ε

η
===

Z
Y

Ω≈= 377space free of impedance  Zwhere 0

EnH


×= ˆ
0

1
η

And now
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Propagation in conducting media

We have considered propagation in free space (perfect dielectric
with σ = 0). Now consider propagation in conducting media where
σ can vary from a finite value to ∞. 

ε
ρµµε ∇+

∂
∂

=
∂
∂

−∇
tt
JEE 2

2
2Start with

Assuming no free charge and the time harmonic form, gives

22

22

22

     where
0

µεωωµσγ

γ

ωµσµεω

−=

=−∇

=+∇

j
EE

EjEE




Complex propagation
coefficient due to
finite conductivity
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Conduction current and displacement current

In metals, the conduction current (σE) is much larger than the 
displacement current (jωε0E). Only as frequencies increase to
the optical region do the two become comparable.

E.g.         σ = 5.8x107 for copper
ωε0 = 2πx1010x 8.854x10-12 = 0.556

So retain only the jωµσ term when considering highly conductive
material at frequencies below light. The PDE becomes: 

00
2 =−∇ EjE


σωµ
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Plane wave incident on a conductor

Consider a plane wave entering a conductive medium at normal
incidence.

z
x

Ex

Hy

Free space Conducting medium

Some transmittedMostly reflected
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Mathematical solution

The equation for this is:
002

2

=−
∂

∂
x

x Ej
z
E σωµ

The solution is: zj
x eEE σωµ0

0
−=

We can simplify the exponent: ( )
2

1 0
0

σωµσωµγ jj +==

So now γ has equal real
and imaginary parts.

2
      with  0

0
σωµβαβα === −− zz

x eeEE

Alternatively write δδ
jzz

x eeEE −−
= 0
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Skin Depth

The last equation 

gives us the notion of skin depth:
βασωµ

δ 112

0

===

On the surface at z=0 we have Ex=E0
at one skin depth z=δ we have Ex=E0/e

δδ
jzz

x eeEE −−
= 0

field has decayed to 1/e
or 36.8% of value on the
surface.  
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Plot of field into conductor

δ 2δ …….

z

E0

E0/e
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Examples of skin depth

f

2

0

106162 −×
==

.
σωµ

δ

at 60Hz   δ=8.5x10-3 m
at     1MHz δ=6.6x10-5 m
at 30GHz δ=3.8x10-7 m 

σ = 5.8x107 S/mCopper

Seawater
f

210522 ×
=

.δ

at 1 kHz δ=7.96m 

σ = 4 S/m
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Characteristic or Intrinsic Impedance Zm

Define this via the material
as before:

ω
σε

µ
ε
µ

j
Z

c
m

−
== 00

But again, the conduction current predominates, which means 
the second term in the denominator is large. With this
approximation we can arrive at:

( )
σδσ

ωµ jjZm
+

=+=
1

2
1 0

For copper at 10GHz  Zm= 0.026(1+j) Ω
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Reflection from a metal surface

So a reflection coefficient at metal-air interface is 

0
0

0  since   1 ZZ
ZZ
ZZ

m
m

m <<−≈
+
−

=ρ

We also note that as σ→ ∞, Zm→ 0 and that ρ= -1 for the case
of the perfect conductor. Thus the boundary condition for a PEC
is satisfied in the limit.

The transmission coefficient into the metal is given by τ = 1+ρ
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Conductors and dielectrics

Materials can behave as either a dielectric or a conductor 
depending on the frequency.

EjEH ωεσ +=×∇      recall

Conduction current density

Displacement current density

3 choices
ωε >> σ displacement current >> conductor current  ⇒ dielectric
ωε ≈ σ displacement current ≈ conductor current    ⇒ quasi conductor
ωε << σ displacement current << conductor current  ⇒ conductor
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A rule for determining whether dielectric or conductor

ωε
σ
ωε
σ

ωε
σ

<

<<

<

100               Conductors

100
100

1     Conductors Quasi

100
1                         sDielectric

M

2
1

0
-1
-2

8 9 10 11

dielectric

quasi conductor

conductor

ground seawater

copper

N     Freq=10N

ωε
σ

=  10M
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General case: (both conduction & displacement currents)









+−=−=

ωε
σµεωµεωωµσγ
j

j 1  222

If we now let γ = α+jβ, square it and equate real and imaginary
parts and then solve simultaneously for α and β. We obtain:

rad/m     11
2
1

Np/m     11
2
1

2
1

2

2
1

2


























+






+=


























−






+=

ωε
σµεωβ

ωε
σµεωα
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Approximations

By taking a binomial expansion of the term under the radical
and simplifying, we can obtain: 

( )jZw +1
2

                                              

   
2

                                           

    
2

                          
2

                

σ
ωµ

ε
µ

ωµσµεωβ

ωµσ
ε
µσα

Good conductorGood dielectric
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Example Problem 1:

An FM radio broadcats signal traveling in the y-dirrection in air 
has a magnetic field given by the phasor 

( ) ( )

( )  ingcorrespond the Find (b)
m). (in h wavelengtand MHZ) (infrequency  theetermine (a)

.

ˆˆ. .

yE
 D

mAjzxeyH yj 1680310922 −π−− −+−×=

( ) ( ) 1680

1

11

102
2

680

−π−

−

−−−≈⇒

ωε=
∂

∂
−

∂
∂

=×∇

≈
π

ω
=

−π=εµω=β

mVzjxeyE

Ej
y

Hz
y

HxH

MHzf

mrad

yj

o
xz

oo

ˆˆ.

ˆˆ

.

.

             

 whichfrom
               

 have  we(a)
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Example Problem 2:

A uniform plane wave of frequency 10 GHz propagates in a sufficiently 
large sample of gallium arsenide (GaAs, εr≈12.9,µr ≈1, tanδc ≈5x10-

5),which is a commonly substrate material for high-speed solid-state 
devices. Find (a) the attenuation constant α in np-m-1,(b) phase velocity 
νpin m-s-1,and (c) intrinsic impedance ηc in  Ω.

1
8

410

00
410

410

4

1880912
1032

105102
2

105102
2

105102
22

1105

−
−

−

−

−

−≈
××

×××π
=

εµεµ×××π
=

ε
µ×××π

=
ε
µδωε

=
ε
µσ

≈α

<<×=δ

mnp

rr

c

c

    

   

 have  We(a)
.dielectric good a forapprox  the use can  we Since

..

tan

,tan



Massachusetts Institute of Technology                                RF Cavity and Components for Accelerators               83

Example Problem 2:

air. in that that
 smaller times ~ is impedanceintrinsic   the that Note

  impedanceintrinsic  The (c)

air. the in that slower times ~ isvelocity   phase

 the that Note

 have  we where

 velocity  hase Since (b)

p

p

593

105
912

377
593

10358
912

1031 17
8

.

.
.

.

..
.

,

Ω≈≈
ε
µ

≈η

−×≈
×

≈
µε

≈ν

µεω≈β

β
ω

=ν

−

c

sm

p
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Example Problem3:

A recent survey conducted in USA indicates that ~50% of the population 
is exposed to average power densities of approximately 0.005 µW-(cm)-

2due to VHF and UHF broadcast radiation. Find the corresponding 
amplitude of the electric and magnetic fields.

( )

( )

( ) ( )[ ]zt
E

zzt
E

EzHΕ

ztEH

ztEΕ

y

x

β−ω+
η

=β−ω







η

=×=Ρ

ε
µ=ηµεω=β

β−ω
η

=

β−ω=

21
2

1

2
020

0

0

0

cosˆcosˆ

.

cos

cos

by given is  wavethis for vector Poynting The  and  where

:medium lossless a in gpropagatin  waveplane uniform the Consider
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Example Problem3:

( ) ( )[ ]
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Ω
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−≈×××≈
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