!&"Is Lecture 1- Review

* Maxwell’s equations
 \Wave equations
 Plane Waves

e Boundary conditions
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Ih"[s Maxwell’s Equations
L2114

The general form of the time-varying Maxwell’s
equations can be written in differential form
as:

oD

ot
oB

ot

VxH=J+

VxE=

V-D=p
V-B=0
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Ihn[s A few other fundamental relationships
(A4 L

J =0kt "Ohm's law"
V.J= —%—'[t) "continuity equation"
D=¢E . . .

} "constitutive relationships"
B=uH

here ¢ = g,¢, (permittivity) and i = u, 1, (permeability)
with &, =8.854x107°F/m, u, =47 x10""H/m
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|h|3[a A few other fundamental relationships
(A4 L

Maxwell’'s Equations

L
= In vacuum, |V-E=0 V-B=0 We use SI
VxE=-2 yip-L&
of "

VxE=-+2 yyp-L1l%L

= Try eliminating B JL &
TX(TKE) —?xi ;(TKB):L}(‘T—P}:
ot ol - or”

b?x(?xE 1 E
\- (

| Do you know the “BAC-CAB” rule?
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m}s A few other fundamental relationships
(A4 L

Wave Equations

Ax(BxC)=B(A-C)-C(A-B) <::| Very useful rule

Prove it!

= Using this rule,

Vx(?xE):V(E%)—(V-V)Ez—VEE

0
= We get p?
' B E: =c'V'E
o Wave equations
= Similarly, we can derive for the EM waves
o°B in free space
== c’'V’B i

s They look just like the 3-D wave equation from 2 weeks ago

= We know the solutions
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|h|3[a A few other fundamental relationships
(A4 L

Plane Waves
N

= Solutions must be plane waves
E=E % B=B"“* " @ = ck
= E,and B, are not completely free
= Must satisty all of Maxwell’s equations

= V:E=0 = k-E=0 E and B are
= V.-B=0mp Kk-B=0 perpendicular to k

oB
ITKE:_E mp K<xE =wB E and B arc
| OF . <: perpendicular
0 ‘Fsz(—leﬂka:—rfE to each other
e/ C”
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Ihn[s A few other fundamental relationships
(A4 L

Transverse Waves

I
= EM waves In free space 1s transverse
W o (h & ELB

| DR ¢
Blk
x_."k

ol ﬁr T hz.
i

|

N{;{}f YWY
« From kxE=wB and @ =ck mmp |E| = ClBl
= [f you want H, hE -
= i
P72 O B 9
Ho  CHy 2 (3770)
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|h|3[s A few other fundamental relationships
(A4 L

Maxwell’'s Equations
I

= Now we go back to Maxwell’s equations

V-E=L  V.B=0

2

OB
V}{E——i—r VKB=L£+;1,]J‘_
| e

e D
= Movement of the ChEll‘”ES in matter = Current J = gn,v

g CE
« Weassumed x =& ‘ w.r—k_
Ot

= Usual trick with BAC-CAB rule gives us
1 O°E ,u,]q n, o°E
¢* or k. or

&

V’E =

Simple wave equation
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“h[h Afew other fundamental relationshios

Plane Wave Solution

B
1 . q n aEE
S n 0 i) fK-x—at)
VE=|—+ - E=E,e
C
.5'
| u,q'n
= Wave equation reduces to —k°E =—-w" | —+ D!( ~ E
L L S C” .
« Dispersion relation 1s ’
7
, @ q 1, C 2
k™ =—1 ‘c*— S N A
C” .f, I( 1 SO
0 "s l+ q My
ot s =
Same 71,

= We found the same solution
= We used the short-cut by trusting Maxwell’s J term
» It can be made even simpler...
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Ihn[s A few other fundamental relationships
(A4 L

Maxwell’s Equation
B
» lake the equation VxB =g, 4, :E + 11,)

« We are assuming
g OF b?KB—E ok ,uqn cE

=i = "t k.ot
| q zn 6l )
N = & T Ho—
= We could define k, ot
£=§, +ﬂ VxB=gu, ck
k ot

« We absorbed the J term into the matter’s permittivity ¢

= Now it's easy to get n = < = fl1+L
= e S (]
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Ih"[s Integral form of the equations
L2114

V-D=p = if>|3-d§=Q
S
VxE=-P §E-d25:—j68.d*
ot e : ot
V-B=0 = §B-ds =0
S
vxi-3+D o g dz:j[JﬁD] i
t . ot




Ih"[s Wave Equations
L2114

In any problem with unknown E, D, B, H we have 12
unknowns. To solve for these we need 12 scalar equations.
Maxwell’s equations provide 3 each for the two curl
equations. and 3 each for both constitutive relations (difficult

task).

Instead we anticipate that electromagnetic fields propagate as
waves. Thus if we can find a wave equation, we could solve it
to find out the fields directly.
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Ih"[s Wave equations
L2114

Take the curl of the first Maxwell:

VxVxH =VXJ+VX§(5E)

:VxJ+52(V><E)
ot
_vxdrelf_ 00
ot ot
o°H

=V xJ— ue
\ y2 ot

Now use VxVxH=V(V-H)-VZH on the LHS
\ O
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Ih"[s Wave Equations
CURA |

The result iIs:

y
0 IZ_I —_VxJ
ot

V? I:I—,ug

Similarly, the same process for the second Maxwell produces

Note how In both case we have a wave equation (2nd order PDE)
for both E and H with fields to the left of the = sign and sources
to the right. These two wave equations are completely equivalent

to the Maxwell equations.
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Ih"[s Solutions to the wave equations
L2114

Consider a region of free space (c = 0) where there are no sources
(J = 0). The wave equations become homogeneous:

2 “E
VS E—-ue pvg =0
) 0°H
V- H- ue pvg =0
Actually there are 6 equations; we will only consider one
component:
e.9. E(z1)
0°E, 1 0°E, 1 )

x_———x=0 where v°=
oz° v° ot Ho&o

I
O
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Ih"[s Solutions to the wave equation
L2114

Try a solution of the form f(z-vt) e.g. sin[ 5(z-vt)]. By differentiating
twice and substituting back into the scalar wave equation, we find
that it satisfies!

A

@) |~ t=0
. ' -2

f(z-vty)

f(z-vt,)
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I""[s Plane Waves
)] |

» First treat plane waves in free space.
e Then interaction of plane waves with media.
e \We assume time harmonic case, and source free situation.

We require solutions for E and H (which are solutions to the
following PDE) in free space

Vz E n koz E’ -0 No potentials here!

(no sources)

Note that this is actually three equations:

2 2 2
X /
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Ih"[s How do we find a solution?
Q11 L

Usual procedure Is to use Separation of Variables (SOV).
Take one component for example E,.

E, = f(x)a(y)h(z)

ghf "+ fthg" + fgh” + k. fgh =0

f " g " h”
+ + + k02 — () ——, Functions of a single
f h variable =>sum = constant = -k?
g 0
f " h”

.9 .
T:—kf, —:—kj, F:_kzz
g

andso | KEkieki=ke with k=20 =2
C
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Ih"[a Mathematical Solution
Q11 L

We note we have 3 ODES now.

dzf 2 : : * JKy X
™ +k, f=0  solutionis f ="
2 .

Ccll g +k?g=0  solutionis g=e"""

y
2
d—?+ k’h=0  solutionis h=e*’

dz

e _Aeij(kxx+kyy+kzz)
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Ih"[s But, what does it mean physically?
L2114

- Aeij(kxx+kyy+kzz)

« —

This represents the x-component of the travelling wave E-field
(like on a transmission line) which is travelling in the direction
of the propagation vector, with Amplitude A. The direction of
propagation Is given by

—

K =K, X+Kk,y+Kk,Z
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The solution represents a wave travelling in the +z direction with
velocity c. Similarly, f(z+vt) Is a solution as well. This latter
solution represents a wave travelling in the -z direction.

So generally,

E,(z,t)= f{(x vty £vt)z£vt)]

In practice, we solve for either E or H and then obtain the
other field using the appropriate curl equation.

What about when sources are present? Looks difficult!
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Ih"[s Generalize for all components
CURA |

If we define the normal 3D position vector as:

+ 77

>3

r=XX+
thenk -F =k x+k,y+k,z

E — Ag kT« t+signdropped
General expression .. kT
for a plane wave similarly Ey = Be

>0 X / here
\ E, =Ce '

/

E=E,e " where E,=AR+By+C3
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I,(H's Properties of plane waves
L2114 I

For source free propagation we must have V-E = 0. If we satisfy
this requirement we must have k-E,= 0. This means that E,

IS perpendicular to K.

The corresponding expression for H can be found by
substitution of the solution for E into the VxE equation. The

result is:
kO

W,
Where n Is a unit vector in the k direction.

H = AxE
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Note that H iIs also perpendicular to k and also perpendicular to
E. This can be established from the expression for H.

Note that:
ExH=n or k
E and H lie on the
plane of constant
phase (K-r = const)
~ K,n

Direction of propagation
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Ih"[s Plane waves at interfaces (normal incidence)
L2114

Consider a linearly polarized (in x-direction) wave travelling in
the +z direction with magnitude E;

H1€101 H28207
Incident & i
H. t Transmitted
E- — jkyiz H _ Ee—ﬂqz Ht >
I 2 i Z - E |
- 1 Ete—jkzz , HI — _te—jkzz
Reflected f Z,
H Xlk
r Arbitrary
ot g =L e -7 orientation!
F ? F Zl
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I
E,=Ee”™+Ee™, E,=Ee’™

H = Ee—ﬁlz _ﬂeﬂﬁz H = ﬂe—ﬂw

8 Zl Zl | s Zz

E;-:'+Er :E; : Ei_Er :ﬂ
Zl

_ ZZ_Zl

VA
= E=TFE, E = : I =TE
AR A

)
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Ih"[s Metallic Boundary
L2114

o << we, o, >> WE,
=Vmle B=oJam 7,04 Now 2o, ot i, =1+ oumo, 2
Z,
E =-FE, E=12F
Z

|

E,=-j2Esinlkz), H - 25 (k,z)

VA
2 0z —jf z
E,=2"2F ¢ %"
Zl

H ~ i e_azz_fﬁzz
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Ih"[s Metallic Boundary
L2114

Dielectric Metal

T << WE,
O, > OF,

Z1 — \,Uu1/81 ) }6)1 = 04/ & L Z, :(1+j)v'lllw#2/20_2 , 0+ J 5, =(1+j)x/w#20'2f2

4
£
L4\

= ,
ll

Skin depth
1 2
S=—= [~
O:Z w% 0-2
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IH"{S Boundary conditions
CILPAN

Maxwell’s equations in differential form require known boundary
values in order to have a complete and unique solution. The
so called boundary conditions (B/C) can be derived by considering

the integral form of Maxwell’s equations.

We deal with a general dielectric interface and two special
cases. First the general case. For convenience we consider

the boundary to be planar.

€1116, p =

€2 1,0,

RF Cavity and Components for Accelerators
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Iql'.s General case
S

Eﬂ:Erw gZEﬂz_glEﬂlszS' Hﬂ _Hrzz'jss JulHﬂl:JuZHﬂZ

H
g0y Fu 4 I €110 - 4 I
E2H207 E, E2H207 H,, '
Tangential E continuous n x (H;-H,)=J,
E(Mnt

€110, Bny . €110 T Dy 40

€226 B, €21207 ! Dan
Normal B continuous n-(D;-D,)=p

BT - _% pH-dl =J-S
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&111,6,=0 n

€,11,0,=0
E.,=E,, — tangential E fields continuous)

H,=H,, — tangential H fields continuous (no current)

D,,=D,,— normal D fields continuous (no charge)

B.,=B,, —— normal B fields continuous
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&111,6,=0 T n

0, = © Perfect Electric Conductor E,,=H,,=0

E,=0 —— Tangential Electric field on conductor is zero.
nxH,=J, — H field is discontinuous by the surface current
n.D,=p —— Normal D(E) field is discontinuous by surface charge

B,=0 —— Normal B(H) field is zero on conductor.
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Continuity at the boundary for the tangential fields requires:

Fix signs when
defining impedance!

H +H, =H, 2)
Now define: 5—:: Z, II—EIrr =—7, E—tt: Z,
Substituting into (1) and (2) and eliminating E, gives
E, 27,

Transmission coefficient |7=—=
E. Z,+Z,
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qu"l's Plane Wave in Dispersive Media

= Recall the Maxwell’s equations:

V x

<L
I
| S—
>
00,
M
~
X
=<
>
~—
N
I
M
~
X
<
N
N
D
g,

joD+J

<1

E =
x B
B =
D =

Ql

0
Pv
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Ih"[s Plane Wave in Dispersive Media
L2114

- So far, for lossless media, we considered J=0, and p,=0 but,
there are actually two types of current and one of them should
not be ignored.

« Total current is a sum of the Source current and Conduction
current.
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Defining complex permittivity

. O
eE=¢&—]—
6V
Maxwell's equations in a conducting media (source free) can be
written as
VxE=-]jouH
VxH = JoeE
V-H=0
V-E=0
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Ih”[s Plane Wave in Dispersive Media
L2114

We have considered so far:

Plane Waves Plane Waves Plane Waves Plane Waves
in Free space In Isotropic In anisotropic In Dissipative
Dielectric Dielectric Media
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Ih"[a Plane Wave in Dispersive Media
L2114

Wave equation for dissipative media becomes:
?x(@x E): —jouVxH

(V-E)-VE = - jou(jozE)

V?E = —0°ucE

V2H = —o2ueH

QL

The set of plane-wave solutions are:

EI,XEOe_JKZ
Fi :'y E e_JKZ
n
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Ih"[s Plane Wave in Dispersive Media
L2114

Substituting into V2E = —@2usE and V2H = —-o?ueH

yields the dispersion relation

K% = (Dzue
and
n= =

E

Is the complex intrinsic impedance of the isotropic media.
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!h"[a Plane Wave in Dispersive Media

Denoting the complex values:
K=Kp — JK|
then,
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Ih"[a Plane Wave in Dispersive Media
L2114

Loss tangent is defined from

=R - iy =wﬁ=w\/u(s—j;’))

i

© is defined as loss tangent

0e
8=8—jG=8(1—jj=8’—j8”
0 €
tano = —
g
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Ih"[a Plane Wave in Dispersive Media
L2114

o
Slightly lossy case: — <<1
e
. O . ©
K:@@J@_ ,j :@@(1_ Jj
WEe 2m¢€
KR = W4/ UE
G o |u
K| =OUe—— = —.|—
| H 20 2 \¢€

Massachusetts Institute of Technology RF Cavity and Components for Accelerators



“h[h Plane Wave in Dispersive Media

_ @)
Highly lossy case: —— >>1

me

K= wfj(l Jj wf(\/ ngj
- Jon%a- )

dp=.——= 0  Skindepth
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Ih"[s Plane Wave in Dispersive Media
L2114




Ih"[s Reflection & Transmission
Q11 L

Similarly, substituting into (1) and (2) and eliminating E,

Reflection coefficient |p= E, — Z, =4,
E. Z,+Z

Not 1-p

We note that T = 1+p, and that the values of the reflection
and transmission are the same as occur in a transmission line

discontinuity.
Z, > =) Z
p T
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(1) Medium 1: air; Medium 2: conductor
1+ ]

o0

L,=3771Q >> Z,=7_=

27,

So E, =7E = E.

1

thenuse H, :;: H, =Z£Ei =~ 2H,
This says that the transmitteél magneticlfield Is almost doubled
at the boundary before it decays according to the skin depth.
On the reflection side H; ~H, implying that almost all the
H-field is reflected forming a standing wave.
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Ih"[s Special case (2)

(2) Medium 1: conductor; Medium 2: air

Reversing the situation, now where the wave is incident
from the conducting side, we can show that the wave is
almost totally reflected within the conductor, but that the
standing wave Is attenuated due to the conductivity.
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!h"[s Special Case (3)

(2) Mediuml.: dielectric; Medium?2: dielectric

o

7 7R

81 82 \/?1+1
&)

This result says that the reflection can be controlled by varying
the ratio of the dielectric constants. The transmission analogy
can thus be used for a quarter-wave matching device.
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Ih"[a A/4 Matching Plate
L2114

Air: =1 Plate /=7 Dielectric =4
Zy Z, Z,
Y/

Transmission line theory tells us that for a match

\/ﬁé{ We will see TL lectures later ]

Z, 376.7

Z,=376.7Q2, Z, \/> =188Q
gl’
. Z,
So Z,=266Q and & =—=2
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I""[s Applications
I

The principle of A/4 matching is not only confined to transmission
line problems! In fact, the same principle is used to eliminate
reflections in many optical devices using a A/4 coating layer on
lenses & prisms to improve light transmission efficiency.

Similarly, a half-wave section can be used as a dielectric window.
le. Full transparency. (Why?). In this case Z,=Z, and the
matching section is A/2. Such devices are used to protect antennas
from weather, ice snow, etc and are called radomes.

Note that both applications are frequency sensitive and that the
matching section is only A/4 or A/2 at one frequency.
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IH""S Oblique Incidence
CILPAN

The transmission line analogy only works for normal incidence.
When we have obligue incidence of plane waves on a dielectric
Interface the reflection and transmission characteristics become
polarization and angle of incidence dependent.

We need to distinguish between the two different polarizations.
We do this by first, explaining what a plane of incidence is, then
we will point out the distinguishing features of each polarization.
We are aiming for expressions for reflection coefficients.

We note again that we are only dealing with plane waves
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Is][s Plane of Incidence
Q11 L

normal both direction of propagation

vector and normal vector.
Direction of
propagation
e

Surface y Plane of incidence contains }

X

~ Dielectric

%% Interface in

7 X-z plane
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Ih"[a Parallel & Perpendicular Incidence
L2114

Plane of incidence is the x-y plane

y y
E H
H E
. X . X
E is Parallel to the E is Perpendicular to the
plane of incidence plane of incidence
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€y
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Lhed

Write math expression for fields!

E, = 2E, exp| jB,(xsin @ + ycosé, )]

H, =(-Xcos@ + ysiné, )%exp[jﬁl(XSin 6, +ycoso,)|

|
1

Er = 2/OL EO exp[jﬂl(XSin gr o yCOSQr )]

P Eq

H, =(Xcosé, + §siné,) - expl jB,(xsind, —ycosé, )]

1

E, =77 E,exp|jB,(xsin6, + ycos6,)]

H, = (- Xcosé, + §sin Ht)TlZEO expl jB,(xsin 6, + ycosé, )]

2
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Ih"[s How did you get that?
L2114

Within the exponential: This tells the direction of propagation
Of the wave. E.g. for both the incident E; and H.

| /jgl(xsin 6, +ycosé,)
Propagating | Acomponent in the — x direction

In medium 1 |

Another component in the —y direction

Outside the exponential tells what vector components of the field
Are present. E.g. for H,

Perpendicular reflection
‘E/ coefficient
PrEq

- (Xcosé, +ysind. )

Zl E,/Z, converts E to H
+Xx and +y components of H,
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Ih"[s Apply boundary conditions
Q11 L

Tangential E fields (E,) matches at y=0
Tangential H fields (H,) matches at y=0

exp(iBxsing, )+ p, exp(jB.xsing, )=z, exp(jB,xsiné,)

We know that t =1+ p, so then the arguments of the
exponents must be equal. Sometimes called Phase matching

In optical context. It is the same as applying the boundary
conditions.

= 15.8IN6; = )5, sIn6, = B, sIn6,
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Ih"[s Snell’s laws and Fresnel coefficients
Q11 L

The first equation gives 0 =06

r |

and from the second using g =2~ sing, = |£1°L sing
A &,

By matching the H, components and utilizing Snell, we can
obtain the Fresnel reflection coefficient for perpendicular
Incidence.

~ Z,C0s0,—Z,Ccos06,
Z,C0sE +Z,cos0,

12
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Lhed

Alternative form

Alternatively, we can use Snell to remove the 6, and write it in
terms of the incidence angle, at the same time assuming
non-magnetic media (u= y, for both media).

Cos . —\/g

&1

PL=
cos@i+\/g

&1

Note how both forms
+—  reduce to the transmission
line form when 6,=0

This latter form is the one that is most often quoted in texts,
the previous version is more general

Massachusetts Institute of Technology
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Ih"[s Some interesting observations
L2114

* Ife,>¢; Then the square root is positive, p, Is real
e Ifg,>¢, I.e.thewave is incident from more dense to
less dense
AND

] E
sin® @, > =2
&

Then p, iscomplexand|p, |=1

This implies that the incident wave is totally
Internally reflected (TIR) into the more dense
medium
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IS — ol

When the equality is satisfied we have the so-called critical
angle. In other words, If the incident angle Is greater than or
equal to the critical angle AND the incidence is from more
dense to less dense, we have TIR.

. &
6. =sin™ |2
&

For 6> 0., Then pJ =1 as noted previously.
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Ih"[s Strange results
L2114

. E . . -
Now sind, = /—1s;|n0i sosinceg >&, = sing, >1!
&,

cos b, :\/1—sin2 0, = jA cosé, isimaginary!

where A :\/isin2 6 -1
&,

What is the physical interpretation of these results? To see
what Is happening we go back to the expression for the
transmitted field and substitute the above results.
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Ih"[s Transmitted field
CIFAS

previously ~ E, =27, E,exp|jB,(xsing, +ycosé, )]

\
cos 0,=JA
= 22’L Eo exp[j,BZXSin Ht]exp[— Oty]

whereo = S,A=w yzgz\/ﬁsinzéﬁ—l

&,

Physically, it is apparent that the transmitted field propagates
along the surface (-x direction) but attenuates in the +y direction
This type of wave Is a surface wave field
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IS —_— oo

AR N N :
ater > Assume:

g =081

c=0

& =1

Let 6, = 45° 1
evaluate 6. =sin1\/; =6.38 so 6 >6,=TIR
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Lhed

Using Snell  sin g, = \/@Sm 45" =6.38 / Choose + sign
1 to allow for
. y _ attenuation
cosf, =+ jVBlsin? 45°~1=+]6.28 i +y direction
o =ﬂ2A=i—ﬂ6.28= 39.5

0 0

Nep/m

This means that if
the field strength on r=1+p,

the surface islVm-1, 1
then 0.707 — 81—0,5

E|=|7|E;|=1.42Vm™ =1+

81

=142/ —-44.6°
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Lets evaluate the transmitted E field at A/4 above the surface.

E, :1.42exp{_39'49 ’ﬂ =73.2,Vm™
0
-6
~20log| 2210 | g584B
1.42

This means that the surface wave Is very tightly bound to the
surface and the power flow in the direction normal to the
surface Is zero.

Massachusetts Institute of Technology RF Cavity and Components for Accelerators



Ih"[s What about the factor K, ?
“J W
11 0

K, 21 2 1 &

Oy AUy  Copy  Cly Hy

This term has the dimensions of admittance, in fact

Y0:1:1: i
Ly 1 Vﬂo

where Z, = impedance of free space = 377Q

~01 . -
And now H=—nxE

o
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We have considered propagation in free space (perfect dielectric
with ¢ = 0). Now consider propagation in conducting media where
o can vary from a finite value to oo.
0°E 0J yo,

=u—=+V-=—
ot’ “ ot E
Assuming no free charge and the time harmonic form, gives

V°E + 0° usk = jouct
)= )= Complex propagation
VE-y"E=0 /coefficient due to

finite conductivity

Start with V2E— ue

where | v° = jouo — usw’
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Ih"[s Conduction current and displacement current
L2114

In metals, the conduction current (cE) is much larger than the
displacement current (Jog,E). Only as frequencies increase to
the optical region do the two become comparable.

E.gQ. o = 5.8x10’ for copper
e, = 21x101%% 8.854x10-12 = 0.556

So retain only the jouc term when considering highly conductive
material at frequencies below light. The PDE becomes:

V2E - jou,oE =0
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Ih"l.s Plane wave incident on a conductor
Q11 L

Consider a plane wave entering a conductive medium at normal

Incidence. . .
Free space Conducting medium
EX
Hy
>
Mostly reflected Some transmitted
X A

v
N
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Ih"[s Mathematical solution
Q11 L

The equation for this is: O0°E, .
2X — Ja)luOO-EX =0
0z
The solution is: —Jjouyo
E, =E,e ’
We can simplify the exponent: y = \/ja)/zoa _ (1+ j) 60/1200
So now v has equal real
and imaginary parts. E, =Ee“e”* with a=p8= w’; i
_z/ _Iz
Alternatively write E =E.e %Se A
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b — s

The last equation /it
! E, =E.e e 75

gives us the notion of skin depth: O = / 2 _1_1
ou,c o f

On the surface at z=0 we have Ex=E,

at one skin depth z=6 we have Ex=E/e field has decayed to 1/e
or 36.8% of value on the
surface.
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LD e o o

Copper s_ | 2 _661x107 5 = 5.8x107 S/m
Q)TN \/?
at 60Hz 5=8.5x10"3m
at 1MHz 5=6.6x10>m
at 30GHz 0=3.8x10" m
Seawater 5 2-5\2/i102 s =45S/m
f

at 1 kHz 0=7.96m
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Lhed

Define this via the material 7 Mo _ | Ho
as before: & qe—j2
)

But again, the conduction current predominates, which means
the second term in the denominator is large. With this
approximation we can arrive at:

: / 1+ |
Zm:(1+1) 211;'0 - 0'5J

For copper at 10GHz Z_= 0.026(1+)) Q
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So a reflection coefficient at metal-air interface is
_ Zm B ZO
L +Z,

Jo, ~-1 sinceZ_ << Z,

We also note that as 6— «, Z_— 0 and that p= -1 for the case

of the perfect conductor. Thus the boundary condition for a PEC
Is satisfied in the limit.

The transmission coefficient into the metal is given by © = 1+p

Massachusetts Institute of Technology
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Materials can behave as either a dielectric or a conductor
depending on the frequency.

recall VxH :@@
/ ~.Displacement current density

~ Conduction current density
3 choices
we >> ¢ displacement current >> conductor current = dielectric

we =~ ¢ displacement current ~ conductor current = quasi conductor
we << ¢ displacement current << conductor current = conductor
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Ih"[a A rule for determining whether dielectric or conductor
L2114

: : o 1
Dielectrics <
ws 100
: 1 o
Quasi Conductors <—<100
wE
O
Conductors 100 < —
A wE
conductor
2 ——becssssssnnnssannnnns gausananasannnnsnnans N gesasssananasanansnananunananunannnnnnnnnunnnns QA EEREsERERREERRRREEERRREES
2 L7 copper
WE = 10M 0 |_quasi conductor pp
1 —
2 e
dielectric ground seawater
— » N Freqg=10N

—t—1—
8§ 9 10 11
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Ih"[s General case: (both conduction & displacement currents)
L2114

v’ = jouo — usw® = —a)zy({l+_i}
jowe

If we now let y = o+, square it and equate real and imaginary
parts and then solve simultaneously for o and 3. WWe obtain:

N |~

2
O = W+ UE 1 \/1+(Gj -1 Np/m
2 we

2
S =w\u ;\/1+(Gj +1 rad/m

[

N~

Massachusetts Institute of Technology
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Ih"[s Approximations
L2114

By taking a binomial expansion of the term under the radical
and simplifying, we can obtain:

Good dielectric Good conductor

o _\/7 OUO
\ 2
oUo
p Jue w/—2
z, £ £ 1+ j)
E 20
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I,(H's Example Problem 1:
L2114

An FM radio broadcats signal traveling in the y-dirrection in air
has a magnetic field given by the phasor

H(y)=2.92x10"3e 71908 (L% 4 5))A—m™
(a) Determine the frequency (in MHZ) and wavelength (in m).
(b) Find the corresponding E(y ).

(a) we have
B=0\uye, =0.68nrad —-m™
from which

f= 2 ~102MHz
2T
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Iq"[s Example Problem 2:
I

A uniform plane wave of frequency 10 GHz propagates in a sufficiently
large sample of gallium arsenide (GaAs, ¢~12.9,u, =1, tand, ~5x10
°),which is a commonly substrate material for high-speed solid-state
devices. Find (a) the attenuation constant a in np-m-1,(b) phase velocity
vpin m-s*t,and (c) intrinsic impedance n.in Q.
Sincetand; = 5x107* << 1, we can use the approx for a good dielectric.
(a) We have

aNG\/ﬁ_wataHSC\/ﬂ_anlOlox5xlO_4\/ﬂ
2 \¢e 2 € 2 €

_ 2 x 1010 X5X10_4\/Mr8r JHogo
2

10 —4
_ 21t x10 ><5>;10 199 ~ 0.188 np—m‘l
2x3x10
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IH"[R Example Problem 2:
L2114

(b) Since phase velocity v, = @

where B ~ o./ue, we have

v~ 1 3x108
P Jue 129
phase velocity Is ~ 3.59 times slower that in the air.

o nw 377
c) The intrinsic impedance x~ |— = ~105Q.
©) P e ﬁ J12.9

Note that the intrinsic impedance is ~ 3.59 times smaller
that that in air.

~8.35x10" m—s T Note that the
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Ih"[a Example Problem3:
L2114

A recent survey conducted in USA indicates that ~50% of the population
IS exposed to average power densities of approximately 0.005 uW-(cm)-
°due to VHF and UHF broadcast radiation. Find the corresponding
amplitude of the electric and magnetic fields.

Consider the uniform plane wave propagating in alossless medium :
E. = Eycos(ot —Pz)

H, = %EO cos(ows —Pz)

where B = o/ue andn = ,/*/ . The Poynting vector for this wave is given by
e

2
P=FExH = QEO(ﬂj cos? (ot —Pz)= 2%[“ cos 2(ws —Bz)]
n n
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Ih"[s Example Problema3:
L2114

j P(z, t)a’t—— jT IZ?] 1+ cos 2(wt — Pz )}t

S0 Ey ~/2x377x5x107/107* ~194mV — m ™

_Ey 194mV - m
M 377

= 51504 — m

Massachusetts Institute of Technology RF Cavity and Components for Accelerators



	Slide Number 1
	Maxwell’s Equations
	A few other fundamental relationships
	           A few other fundamental relationships
	A few other fundamental relationships
	A few other fundamental relationships
	A few other fundamental relationships
	A few other fundamental relationships
	A few other fundamental relationships
	A few other fundamental relationships
	Integral form of the equations
	Wave Equations
	Wave equations
	Wave Equations
	Solutions to the wave equations
	Solutions to the wave equation
	Plane Waves
	How do we find a solution?
	Mathematical Solution
	But, what does it mean physically?
	Physical interpretation
	Generalize for all components
	Properties of plane waves
	          Transverse Electromagnetic (TEM) wave
	         Plane waves at interfaces (normal incidence)
	Slide Number 26
	             Metallic Boundary
	             Metallic Boundary
	Boundary conditions
	General case
	Special case (a) Lossless dielectric
	Special case (b) Perfect Conductor
	Boundary conditions
	Plane Wave in Dispersive Media
	Plane Wave in Dispersive Media
	Plane Wave in Dispersive Media
	Plane Wave in Dispersive Media
	Plane Wave in Dispersive Media
	Plane Wave in Dispersive Media
	Plane Wave in Dispersive Media
	Plane Wave in Dispersive Media
	Plane Wave in Dispersive Media
	Plane Wave in Dispersive Media
	Plane Wave in Dispersive Media
	Reflection & Transmission
	Special case (1)
	Special case (2)
	Special Case (3)
	/4 Matching Plate
	Applications
	Oblique Incidence
	Plane of Incidence
	Parallel & Perpendicular Incidence
	Perpendicular incidence
	Write math expression for fields!
	How did you get that?
	Apply boundary conditions
	Snell’s laws and Fresnel coefficients
	Alternative form 
	Some interesting observations
	Critical angle 
	Strange results
	Transmitted field 
	Example
	Example (ctd)
	        Evaluate the field just above the surface
	What about the factor              ?
	Propagation in conducting media
	         Conduction current and displacement current
	Plane wave incident on a conductor
	Mathematical solution
	Skin Depth
	Plot of field into conductor
	Examples of skin depth
	Characteristic or Intrinsic Impedance Zm
	Reflection from a metal surface
	Conductors and dielectrics
	    A rule for determining whether dielectric or conductor
	      General case: (both conduction & displacement currents)
	Approximations
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85

