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The maximum power delivered from the noisy resistor is P,= kTB, which is
considered equally across an entire microwave band.

A resistor temperature at 300° k, noise power for a 10kHz bandwidth
receiver —» P, =4.14 x 101" W = -176dBW= -146dBm

At the standard temperature of 290° k, the noise power available from a
lossy passive network in a 1Hz bandwidth is -174dBm/Hz.
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—| =10log —* Difficult to measure
dB PH
S+N =10log L+ 08, Measurable quantity
dB £y

A receiver produces a noise power of 200mW without signal, as signal is
applied, the output level becomes 5W.

S+N P +P, 5

=10log— =14dB
0.2

=10log
dB PH
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A figure of merit to measure the degradation of SNR of a system

P, =S;+N, Po=S,+ N,
s AHRT | M= | o
GBT Load
NI = >1 NI,z =10log NF = 0dB
(S/N),

For a passive device with G=1/L and in thermal equilibrium at the
temperature T, Ny = kTB =N, , S, =GS; ,

(S/N)o SJ'NO
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IS
An amplifier with input signal 100uW and the noise power is 1uW. The
amplified signal is 1W with noise power 30mW.

signal gain =10log 1000000 =40dB
100
noise gain =10log S0000 44.7dB > 40dB
($/N). 1001
NI = L= = =
5N " 100073 NE, 3 =4.7dB > 0dB
NF = (S/N); I R ~ NF 3 =40—-6=34dB
(S/N)o NO dB 11JB
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Equivalent noise temperature: the absolute temperature to generate the
same noise power, not the physical temperature of the device equivalent
noise temperature T, =P /kB

— P,
— P,
White noise R *
SOUTEE Load = R§ T, k § R
P=S, + N, Py=S, + N, (S/N),
e — S, GhIy+T),
Noisy network KI~B GS -
R, T, R 0 i
S @ GB T Load T
. =1+-¢>1

1g
— T, =(NF -1)T
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E ed circui
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A three-stage amplifier

Stage power gain  noise figure
1 10 10dB 2 3dB
2 20 13dB 4 6dB
3 30 14.8dB 6 7.8dB

Total gain=6000=37.8dB

Total NF=2+[(4-1)/10]+[(6-
1)/(10x20)]=2.325=3.66dB
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Two approaches: using frequency counter to measure frequency directly,
and using probe to measure the wavelength in a transmission line.

Frequency counter approach

(1) Basic principle: direct counting <500MHz

. 1l
Conditioner 1 .
°| Main Count :
lc _ » Display
Time Gate ' Gate SEll
Base O " Generator
gL

(2) Using frequency down-conversion techniques for microwave signals

» Pre-scaling: divider circuit <2GHz
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sTransfer oscillator down-conversion: use PLL to relate the harmonic

relationship between the low frequency oscillator and the input microwave
sighal > 40GHz

PSD

Input signal
P g Power

divider
To
counter
Comb generator >
fVCO
fs = Nfycofirs
Comb generator
fs fVCOifO F|F1
0
Fie> Fr = Nf, To ratio
counter
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Harmonic heterodyne: use mixer to harmonically down convert the input
microwave signal <20GHz

IF amp
Input signal F £ Kf, =f¢
™. » To counter
fs
YIG pin bus
counter

switch control
filter

Comb generator multiplier

Microprocessor

From counter time base fs = KIj +i
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Gunn Oscillator PS

SWR Meter

: Variable
GU”;SC'”ator Attenuator
[ 35dB
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Measure kg — [ =c
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Distance between two adjacent minima is 1.9cm in a WR-90 waveguide.
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2 2
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2% 2.29cm

3.8cm

Massachusetts Institute of Technology RF Cavities and Components for Accelerators USPAS 2010



= \Wavemeter structure

/ Resistive material
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_/—\r avity

INnput  —p — —p Output

_\/ |a’= nh,
. ;Mnuvw—é Input —> b — Output

Transmission type

Microwave Power

Reaction type ...

Standing wave

indicator
Cavity frequency m m

meter _ . o0
Variable precision 0 0O
attenuator pups
Detector probe
Microwave
Source .
1KHz
Square Thermistor mount
Wave .
Modulation | Variable flap -
attenuator Slotted line
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4 o Delciondevces

Power detector: bolometer (thermistor and barretter), thermocouple voltage
detector: crystal detector, Schottky barrier diode, GaAs barrier diode

Thermistor: a metallic-oxide component with a negative temperature
coefficient of resistance

GLASS FILM

SEMICONDUCTOR
MATERIAL

0.001 INCH
DIAMETER
LEADS

Barretter: a short length of platinum or tungsten wire with a positive
temperature coefficient of resistance
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Thermocouple: a pair of dissimilar metal (Sb-Bi) wires joined at one end

(sensing end) and terminated at the other end (reference end). The difference
In temperature produces a proportional voltage.

Crystal detector: use the diode square-law to convert input microwave
power to detector output voltage

Diode
Matching .
® Circuit Low-pass Filter ®
Microwave Low
Input Frequency
Vo s Output
DC Return 10,000 —
o LO0D —
g 100 — Linear Region
E 10 =
DC return is as a ground for E 0, 4
diode and an RF choke. S |
0.1 - Square-Law Region
0.01 T T T 1T T T

=50 =40 =30 =20 =10 L1 10 20 Py
Input Signal Power
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0 o Deeciondevces

Schottky barrier or GaAs barrier diode: high sensitivity noise equivalent
power (NEP): the required input power to produce, in 1Hz bandwidth, an
output SNR = 1 tangential sensitivity (TSS): the lowest detectable microwave
signal power

NLEP = 155 AL Vedio Bandwidth
2.5VAf

Characteristics Crystals Barretters Thermistors
Response Time Extremely fast = 350 ps = | sec
Square-law Response = 10 uW = 200 W = 200 pW
Resistance to Burmout Determined = |2 mW =23 mwW

by design

Resistance to Shock Poor Fair Cood
Temperature Cocfficient  None Positive Negative
Minimum Discernable 1.8 = 1078 pW 1.0 =% 107 pWw 10 = 107 pw
Signal

Method of Operation Rectifies Voltage  Absorbs EM energy  Absorbs EM energy
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Difficulty in measuring voltage or current at microwave frequencies
— power measurement simpler and more precise

Power range: low power <0OdBm, medium power 0dBm~40dBm,
high power >40dBm

power detector sensitivity: diode ~-70dm, thermistor ~-20dBm

Thermistor power meter

Wheatstone

Bridge Balance .

N .

R
AC Ammeter

AC : i 6._ _‘ .
i [
Voltmeter . e ]
o*e @
' e
Microwave B
Power in
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JI ow power case

Consider desired frequency spectrum, circuit mismatch, sensor mismatch,
sensor safe margin, accuracy, calibration

Generator
RF Out
O

LPF
or BPF ?

Massachusetts Institute of Technology

DUT
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Medium power case: use directional coupler or attenuator at the DUT (device

under test) output

Thermistor /7\
Generator
(0dBm) Power Meter
gowelf 1 Watt 10 dB
u
Cireulator 00 PRy Attenuator
= 1 Watt (+10dBm)
1 Watt 3 dB (+30 dBm) 2 Watts 500
Attenuator
Amplifier i
under test
Generator
Power Thermistor /7\
_ Supply
Circulator 50Q (0 dBm) Power Meter
— 1 Watt
1 Watt 3 dB (+30dBm) 30dB 2 Watts 50Q
Attenuator Attenuator - MMA—
Amplifier

Massachusetts Institute of Technology

under test

RF Cavities and Components for Accelerators USPAS 2010



High power case: use directional coupler in reverse direction

Power Meter

0O dBm .

( ) I Thermistor /7\
| Mount

30 dB Maximum full

scale +10dBm

Attenuator
(2 Watts)
(+30 dB)
100 watts
(+50 dBm)
O— 2) 20dB
Power Directional
. Coupler
Amplifier
50 Q, 1IW
Termination
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P3
Insertion Loss 1
D P
A q
Source Component Load
h
I:)4
P1: power to the load without DUT
P2: power to the load after inserting DUT
P3: power dissipated inside DUT
P4: power reflected from DUT
1l ,, =10lo A _ =1 — P
dB = 9 WdBm) ~ L2(dBm)
2
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If I': DUT reflection coefficient and T: DUT transmission coefficient,

11,5 = ~10log[7 = ~10log[T 2~
1—

~ “10log{t—|r?)-1010g T

P-P

=-10log >
1

4 _10log

.
P

2

7
1-|0f°

1y
H -1

= loss due to reflection + loss due to transmission

_>P2

Insertion loss is the characteristics of DUT itself. As input port and output

ports are matched, IL= attenuation.
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Ih"'[a VSWR measurements
QILPA

SWR Meter

. Slotted Line
Microwave

Source
(1 kHz AM)

If E probe penetrates too far into the slotted line, — disturb the field
distribution and detected signal too strong to drive the detector out of its
square-law region.
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(U1 S Parameters
IS
Problems to use Z-, Y- or H- parameters in microwave circuits
» Difficult in defining voltage and current for non-TEM lines
» No equipment available to measure voltage and current in complex value
as oscilloscope

» Difficult to make open and short circuits over broadband
» Active devices not stable as terminated with open or short circuit.

S-parameters of a two-port network

Zo f 2-Port f
Zo Yl Device YZ Zg R.= 29
2V,

a, ly Sy b,
— f > > > > F—>
V]_ r— Sll S < V2

b £ 22 , £
— < < - < < ?
7, — 12 - 2
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a=V{" |7y
h=V"|\Z
a, =V [\ Zo
by =Vy [\ Zo

R R R e P

i
Dy | | 821

mmm) [ncident power to port i:

init =

. Incident (power) wave at port 1
. reflected (power) wave at port 1

. Incident (power) wave at port 2

. reflected (power) wave at port 2

o I, = v, 1y
Zy 2o Zy 2o
512}{31}5_:[91' _Vi
Splal 7 a wohej Vil C0kr
P = eV |=Zlaif? - 2
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S11 :ﬁ . reflection coefficient at port 1 with port 2 matched
31 c’l2=0
So1 :b_z . forward transmission coefficient with port 2 matched
31 él2=0
512 Z% : reversed transmission coefficient with port 1 matched
2 Ell=0
Sy =22
22 _g : reflection coefficient at port 2 with port 1 matched
31=0
2
IL or power gain from port 1to port2 = —10Iog 521
2
IL or power gain from port 2to portl = —10Iog 512

2 2
RL at port 1 or port2 = —10Iog\511\ or =—10 Iog‘SZZ‘
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p a’, a, 52 b, b/,
d [S ] 2 o —> =0 =0
H— —H 511 SZZ
oo " o g s e+« e,
1 12 a,

Sty = Spe /2P 5y = Syem/Blare)

. . Dy = a511 + a8
SiZ = S),¢ JZB(QHZ)’SéZ = So,e 7 2By

by = 591 + a5
Reasons to use S-matrix in microwave circuit

(1) matched load available in broadband application

(2) measurable quantity in terms of incident, reflected and transmitted waves
(3) termination with Z; causes no oscillation

(4) convenient to use in the microwave network analysis
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Spectrum analyzer

Purpose: measure microwave signal spectrum, can also be used to measure frequency,
rms voltage, power, distortion, noise power, amplitude modulation, frequency
modulation, spectral purity,...

Operating principle

Mixer :
IF Amp Log/Lin
) Adjust » Amp
/%/' Detector
Bandwidth
L Y
Horizontal X :
Swept LO sweep | CRT
| Generator Amp
7~ Scan width
Center
frequency Scan time
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Purpose:. measure two-port S-parameter of a microwave device or network, can

also be used to measure VSWR, return loss, group delay, input impedance, antenna
pattern, dielectric constant,....

20 MHz 100 kHz
Operating principle 15T IF 2m0 IF
P . Jp P (51): 51 :
(511, 512)
Ref & g .F"1'=
Pori - " ¥® L]
Device a IF det, and
—0= gnder FO-— amgp hold
Fort teat ‘and
| Lt
ry sElecior Test AT
L"‘:... ] det, Y| conv.
FWD RE (F21, 533) \ ‘
REV SOURCE
; 1 Compauter
processing
| Pazdi) 19.9 and error
Harmionic e MHz comeCtion
generator v
Panel .
ook control ENsplay
I-li RF source and test set -—1—- IF processing -I—' Digital processing 4-1
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IS
Scalar network analyzer measures the magnitude of two-port S-
parameters.

E 1 BE =8 o8 am (]
i - TR TR ||

Hp8510 vector network analyzer
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