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LINAC SYSTEMS
 High Voltage

 Structure types
 Modes

 Longitudinal Dynamics

 Waveguides

 Accelerating Structures

 Klystron

• Beam Loading
• Wakefields
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Linac RF System

High Voltage Supply – The function of the high voltage
supply is to produce the high voltages required for proper
modulator operation. The high voltage should be
regulated , filtered and have some type of feedback of
both the voltage and current. It must be protected
against over-voltage and over-current conditions and be
capable of withstanding high stress during normal
operation as well as of a failure.
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High Voltage Supply – There are two basic approaches in
the design of the high voltage supply. The traditional
approach is what may be called the “brute force”
method. In this approach, a large high voltage
transformer is used with some type of rectification and
filtering.

The second method is by using high frequency switching
supplies. The rend is the power supply industry has been
away from linear brute force and toward switching
supplies.

Linac RF System
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High Voltage Supply – Regulation of the high voltage is
important, as changes in high voltage result in changes in
RF output and ultimately causes changes in the output of
the linac. There are two basic ways of providing
regulation. Direct regulation of the high voltage supply
and post regulation on a pulse-to-pulse.

Linac RF System
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Modulator – The function of the modulator is to provide
high voltage pulses to the microwave transmitter
(klystron). Almost every RF linac today uses some
variation of the line type modulator. This design was used
extensively during WWII for radar applications. The are
called line modulators because the width of the output
pulse is determined by an actual transmission line.
Modern modulators use an artificial transmission line
called a pulse-forming network (PFN).



Linac Modulator System
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Modulator Operation:

1. Charging cycle – The charging inductor and capacitor of
the PFN forma resonant circuit. This resonance causes
the PFN to charge up to twice the voltage supplied by
the high voltage supply. The charging diode keeps the
PFN voltage at full until the discharge cycle.

2. The discharge cycle is initiated by conduction of the
power switch (hydrogen thyratron). The discharge
cycle results in a pulse to appear across the input of
the pulse transformer. Typical ratio is 1:15 for the
pulse transformer.
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Radio Frequency System

The RF system converts the high voltage pulses from the 
modulator into pulsed radio frequency energy. The RF 
pulses are sent to the accelerating structure to setup an 
electric field which is used for charged particle 
acceleration.

The main component of a RF system is the microwave 
source. There is a variety of microwave tubes for 
generating and amplifying microwave signals. The two 
most common ones used in linacs are magnetrons and 
klystrons.
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Radio Frequency System

A magnetron is a microwave power oscillator which
belongs to the family of electron tubes called crossed
field devices. This is because it has an electric field and a
magnetic field which are perpendicular to each other.
The magnetron consists of a circular cathode inside a
circular anode block. There are resonant cavities
machined into the anode block. These cavities will
resonant at microwave frequencies when excited by
electrons interacting with the E and H fields.
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Radio Frequency System

Klystrons belong to the class of tubes called linear beam
tubes. In most linac applications, the klystron is used as
an amplifier, so an input signal is required. This is
provided by a low power oscillator typically called an RF
driver.

The choice of which type RF generator tube is used is
based partially on the design requirements and partially
on historical preference.
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Klystrons
Klystron was invented at Stanford in 1937. The
klystron severed as an oscillator in radar receivers
during WWII. After the war, however, very high-
power klystrons were built at Stanford for use in the
first linear accelerators. This opened the way for the
use of klystron not only in accelerators and radar, but
also in UHF-TV, satellite communications, and
industrial heating.
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Klystrons are high-vacuum devices based on the
interaction of well-focused pencil-like electron beam
with a number of microwave cavities that it traverses,
which are tuned at or near the operating frequency of
the tube. The principle is conversion of the kinetic
energy in the beam, imparted by high accelerating
voltage, to microwave energy. Conversion takes place as
a result of the amplified RF input signal, casing the beam
to form “bunches.” These bunches give up their energy
to the high level induced RF fields at the output cavity.
The amplified signal id extracted from the output cavity
through a vacuum window.

Klystrons
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S-Band 35 MW Klystron (TH2128)



General Description of Thomson Klystron TH2128:



Main Parameters of TH2128 Klystron:
Frequency 2856 MHz

Peak Output Power 35 MW

Average Power 11kW

RF Pulse Duration5µsec

Peak Beam Voltage,Max 300 kV

Peak beam Current,Max 300 A

Peak RF Drive Power, Max 200 W

Efficiency 42%

Perveance 1.9 to 2.15 µA . V-3/2

Filament Voltage 20 to 30 V

Hot Filament Resistance 1.1 Ω

Cold Filament Resistance 0.1 Ω



Typical Operation:

Frequency 2856 MHz

VSWR, Max. 1.1:1

Peak Beam Voltage 280 kV

Peak Beam Current 297 A

Peak RF Power 35 MW

Average Output Power10.5 KW

RF Pulse (at -3 dB) 5 µsec

Power Dissipated on the Body 800 W



RF Power Distribution to the Accelerating Structure
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RF Components:
• Driver amplifier to power klystron

• Klystron is used to generate high peak power ( A small accelerator)

• Need to transport power to the accelerating structure

• Waveguide is used (under vacuum) to propagate and guide  
electromagnetic fields 

• Windows (dielectric material, low loss ceramic) are used to isolate 
sections of the waveguide 

• Termination loads (water loads) are used to provide proper rf match
and to absorb wasted power

• Power splitters are used to divide power in different branches of the
waveguide run



Accelerating Structure Requirements

• High accelerating gradient to optimize length and cost ( LC, NLC) 

• Control of short and long range wakefields

• Preservation of low emittance for multi-bunch beams 

• Minimize HOM effects

• Beam Breakup  
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 1955 Luis Alvarez (UC Berkeley, DTL)

 1947 W. Hansen (Stanford) Disk-loaded waveguide linac

 1970 Radio Frequency Quadruple (RFQ)



Linac RF Layout
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Snapshots of e-field configuration for DL structures with various 
phase shift per period.

π/2 mode 

Electric field amplitude along z-axis 
for π/2 mode 



Structure Types

Constant Impedance Structure (CI)

Constant Gradient Structure (CG)
(a) Traveling Wave (TW) Structure

(b) Standing Wave (SW) Structure



Disk-Loaded Constant Gradient S-Band Structure
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Circular Mode

TM01 mode pattern and traveling wave axial electric field in uniform cylindrical 
waveguide
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Circular Mode

Wave equation for propagation characteristics:

ck

EkE
ω=

=+∇ 022

K is the propagation wave number and ω is the 
angular frequency.
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Circular Mode

For TM01 mode (transverse magnetic field 
without θ dependence – most simple 
accelerating mode) in cylindrical symmetric 
waveguide,
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Circular Mode

The solution for TM01 mode is:

( ) ( )

( ) ( )
( ) ( )ztj

c
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cz
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β Is propagation constant and η is the intrinsic 
impedance of the medium, We can consider that 
kc and β to be the r and z components of k of the 
plane wave in free space.
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Circular Mode
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For any propagating wave, its frequency f must 
be greater than fc, the field is in the form of                 
with β>0. ( )ztje β−ω

Example: An S-band (2856 MHz) structure has a diameter of 2b=8 cm,
the cut-off frequency is fc=1.9 GHz. So a 2.856GHz can propagate as TM01
mode.

Phase Velocity and Group Velocity
The phase velocity Vp is the speed of RF field 
phase along the accelerator, it is given by

β
ω

=pv
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Group velocity is defined as energy propagation velocity.  
For waves composed of two components with different 
frequency ω1 and ω2, wave number  β1 and β2, the wave 
packet travels with velocity:

β
ω

→
β−β
ω−ω

=
d
d

v g
21

21

In order to use RF wave to accelerate particle beam, it is 
necessary to make simple cylinder “loaded” to obtain

cv p ≤
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For uniform waveguide, it is easy to find:

2cvv gp =

ω

β

ω=βc
ωc

vg

vp

Dispersion diagram for  guided wave in a uniform 
(unloaded) waveguide.
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Brillouin diagram showing propagation
characteristics for uniform and periodically loaded
structures with load period d.
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Floquet Theorem: When a structure of infinite
length is displaced along its axis by one period, it
can not be distinguished from original self. For a
mode with eigenfrequency ω:

( ) ( ) yyxxrzrEedzrE dj ˆˆ,, +==+ β−        

Where βd is called phase advance per period.
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Make Fourier expansion for most common accelerating
TM01 mode:

( ) ( )ttj
nnz

nerkJaE β−ω∞

∞−
∑= 0

Each term is called space harmonics.

The propagation constant is
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 Observations
1. When the fundamental harmonic n=0 travels with vp=c, then k0= 0, β0= k and
J0(0)=1, the acceleration is independent of the radial position for the
synchronized particles.

2. Each mode with specific eigenfrequency has unique group velocity.

3. Higher order space harmonics do not contribute to acceleration, but 
take take RF power.
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RF parameters for accelerating modes

Mode which is defined as the phase shift per structure period: φ=2π/m where m
is the cavity number per wavelength.

Snapshots of electric field configurations for disk-loaded
structures with various phase shift per period (left up for
π/2 mode and right for 0, π/2, 2π/3, π mode). Traveling
wave axial electric field amplitude along z-axis for π/2
mode (left lower ).
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Shunt impedance per unit length r: is a measure of the 
accelerating quality of a structure 

dz
dp

E
r a

2
−= Unit of MΩ/m or Ω/m

Where Ea is the synchronous accelerating field 
amplitude and dP/dz is the RF power dissipated per unit 
length.

dP
V

R
2

= Unit of MΩ or Ω
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Factor of merit Q, which measures the quality of an EF 
structure as a resonator.

For a traveling wave structure                    where W is the 
rf

energy stored per unit length and ω is the angular 
frequency and dP/dz is the power dissipated per unit 
length.

For standing wave structure,

dz
dP

W
Q

ω
−=

dP
W

Q
ω

=
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Group velocity Vg which is the speed of RF energy flow 
along the accelerator is given by

β
ω

=
ω−

==
d
d

dz
dPQ

P
W
P

Vg

Attenuation factor τ of a constant-impedance or 
constant-gradient is

P
dz
dP

E
dz
dE

α−=α−= 2    

α Is the attenuation constant in nepers per unit length. 
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Attenuation factor τ for a traveling wave section is 
defined as

τ−= 2e
P
P

in

out

For a constant-impedance section, the attenuation is 
uniform,

Qv
L

L
QvP

dz
dP

gg 222
ω
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ω
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For  non-uniform structures,

( )dzz
L
∫ α=τ
0

For  a constant-gradient section, the attenuation constant 
α is a function of z: α= α(z)=ω/2Vg(z)Q

We have the following expression

( ) ( )
L

eP
constPz

dz
dP in

τ−−
==α−=

212
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r/Q ratio is a measure of accelerating field for a certain 
stored energy. It only depends on the geometry and 
independent of material and machining quality.

w
E

Q
r

ω
=

2

Filling time tF- For a traveling wave structure, the field 
builds up “in space”. The filling time is the time which is 
needed to fill the whole section of either constant 
impedance or constant gradient. It is given by:

τ
ω
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ω
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The field in SW structures builds uo “in time”. The filling
time is the the time needed to build up the field to (1-
1/e)=0.632 times the steady-state field:

( ) ext
c

c

L
F Q

QQQ
t 00

1
22

=β
ωβ+

=
ω

=   

Q0 is the unloaded Q value
dP
W

Q
ω

=0

β
=

ω
= 0Q

P
W

Q
ext
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( ) ( )β+=
+
ω
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1

0Q
PP

W
Q

extd
L

Qext is the external Q value

QL is the loaded Q value 
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The choice of the operating frequency is of fundamental 
importance since almost all the basic RF parameters are 
frequency dependent.

fQrfQ
f

sizefr ∝∝∝∝       11

Structure Types

(a)Traveling Wave Structure (TW)

(b) Standing Wave Structure (SW)

Constant Impedance Structure (CI)

Constant Gradient Structure (CG)
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πMode SCC

Evolution of π/2 mode disk-loaded structure 
to πmode side coupled structure.
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Round Damped Detuned Structure (RDDS – 206 cells
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Longitudinal Dynamics

Energy of particle: 2

2

1 e

cm
u

β−
= 

Energy change with time: θ−= sin
dt
dz

eE
dt
du

z

dz
vv ep∫ 










−ω=θ

11

t
v

z

p
ω−

ω
=θ Where t is the time it takes particle to 

reach z
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Longitudinal Dynamics

dz
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When a particle is faster (ve>vp), dθ>0 and vise versa.

It is convenient to use z as a variable and 
dz
d

dt
dz

dt
d

=

The longitudinal motion is described by the following 
two equations:
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Longitudinal Dynamics

Using                                                (normalized momentum)12 −γ=γβ== e
e

cm
mv

p


Integration using variable substitution of ,122 +=γ p

The equation for the orbit in phase space is

[ ]pp
eE

cm
ppm β−β−−+

λ
π

=θ−θ 22
2

112 coscos
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Longitudinal Dynamics

Longitudinal phase space for βp<1 Longitudinal phase space for βp=1
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Longitudinal Dynamics

Phase velocity less than c (βp<1)

When 1>cosθ>-1, the particles oscillate in p and θ plane
with elliptical orbits centered around (β= βp, θ=0). If an
assembly of particles with a relative large phase extent
and small momentum extent enters such a structure,
then after traversing ¼ of a phase oscillation it will have a
small phase extent and large momentum extent,
bunching.
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Longitudinal Dynamics

Phase velocity equals c (βp=1)

When βp=1, dθ/dz is always negative, and the orbits 
become open-ended. The orbit equation becomes

[ ]
e

e
m eE

cm
pp

eE
cm

β+
β−

λ
π

=−+
λ

π
=θ−θ

1
1212 2

2
2

coscos

Where θm has been renamed to θ∞ to emphasize 
that it corresponds to p=∞. The threshold 
accelerating gradient for capture is cosθ-cosθ∞=2, or 

( ) [ ]0
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2
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0 1 pp
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cm
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λ
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Longitudinal Dynamics

Lets consider a particle entering the structure with a 
phase θ0=0, has an asymptotic phase θ∞=-π/2, thus a 
assembly of particles will get maximum acceleration and 
minimum phase compression. For small phase extents ±
∆θ0 around θ0=0, ( )

22

2
θ∆−

π
−=θ∞

Example:
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Traveling Wave Structures

Energy gain V of a charged particle is given by

( )[ ]
rLPrLPeVCG

rLPeVCI
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RF energy supplied during time tF can be derived 
from above:
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Traveling Wave Structures

Energy W stored in the entire section at the end of filling 
time is
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Standing Wave Structures

Due to multi reflections, the equivalent input power is 
increased:

L
sL

s
L

ss
e

P
ePePPP α−

α−α−

−
=+++= 4

42

1
...

The slightly higher energy gain for SW is paid by field 
building up time (choice of length of SW structures).

For resonant cavity, power feed is related to the RF 
coupling:

ext
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Standing Wave Structures

As defined before, QL, Q0=ωW/Pd, Qext= ωW/Pext are the
loaded Q, cavity Q, and external Q values. βc is the
coupling coefficient between the waveguide and the
structure.

The energy gain of a charged particle is given:

( ) ( ) rLPerLPeV disp
tt

in
c

ctt FF // −− −=
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2

1



Massachusetts Institute of Technology                   RF Cavities and Components for Accelerators                 USPAS 2010 69

Beam Loading

 Long train of bunches

 Bunches in from extract energy from linac

o Lower gradient

o Increase phase

 Effect on later bunches

o Bunch placed directly ignoring beam loading

o Bunch doesn’t gain enough energy

o If it gained enough energy, it would arrive at 
the same RF phase

o Non-isochronous arc: bunch arrives in next 
linac late, sees higher gradient

o Gaines excess energy
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Im(V)

Re(V)

Beam Loading

The effect of the beam on the accelerating field is called
BEAM LOADING. The superposition of the accelerating
field established by external generator and the beam-
induced field needs to be studied carefully in order to
obtain the net Phase and Amplitude of acceleration.

bV~

cV~ gV~
ϕ θ
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Beam Loading
In order to obtain a basic physics picture, we will assume
that the synchronized bunches in a bunch train stay in
the peak of RF field for both TW and SW analysis.
The RF power loss per unit length is given by:

beamwall dz
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dz
dP
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Beam Loading

For constant impedance structure: rIE
dz
dE

α−α−=

( ) ( ) ( )
( ) in

zz

rPE

eIreEzE

α=
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20

10

The total energy gain through a length L is 
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τ−τ−

∫ e

e
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e
LrPdzzEV

L

1112 0

0
P0 is input rf power in MW, r is the shunt impedance per unit 
length in MΩ/m, L is the structure length in meters, I is the 
average beam current in Ampere, and V is the total energy 
gain in MV
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Beam Loading

For constant gradient structures: rI
dz
dE

α−=
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The attenuation coefficient is 
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Beam Loading

The complete solution including transient can be 
expressed as
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Transient beam loading in a TW constant gradient structure.

Beam Loading
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Beam Loading

For a standing wave structure with a coupling coefficient 
βc, the energy gain V(t) is 
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If the beam is injected at time tb and the coupling 
coefficient meets the following condition: 

disp
c P

P01+=β bdispin PPP +=
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Beam Loading

There is no reflection from the structure to power 
source with beam. The beam injection time can be 
obtained:
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Beam Loading Compensation

Using RF Amplitude Ramp during fill
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Wakefields
The wakefield is the scattered electromagnetic radiation created by relativistic 
moving charged particles in RF cavities, vacuum bellows, and other beamline 
components.

Electric field lines of a bunch traversing through a three-cell disk-loaded 
structure

J. Wang, SLAC
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Wakefields

 No disturbance ahead of moving charge – CAUSALTY.

 Wakefields behind the moving charge vary in a complex way, 

in space and time.                                                     

 These fields can be decomposed into MODES.

 Each mode has its particular FIELD PATTERN and will oscillate 
with its own frequency.

 For simplified analysis, the modes are orthogonal, i.e., the
energy contained in a particular mode does not have energy
exchange with the other modes.
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Wakefields
Lets consider a point charge with charge Q moving at the 
speed of light along a path in z direction through a 
discontinuity L:

L

S
Q

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Longitudinal Wakefields

For practical purposes, all the bunches (driven and test 
bunch) are near the structure axis.

We define the longitudinal delta-function potential
Wz(s) as the potential (Volt/Coulomb) experienced by
the test particle following along the same path at time
τ (distance s= τc)behind the unit driving charge.
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Longitudinal Wakefields
The longitudinal wakefields are dominated by the m=0 modes, 
for example TM01, TM02, …
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The loss factor kn is:
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Where Un is the stored energy in the nth mode. Vn is the maximum voltage gain from 
the nth mode for a unit test charge particle with speed of light.
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Longitudinal Wakefields

The total amount of energy deposited in all the modes by the 
driving charge is:

∑=

n

nkQU 2

Longitudinal wakefields are approximately independent
of the transverse position of both the driving charges
and the test charges.

Short range longitudinal wakefield – Energy spread
within a bunch.

Long range longitudinal wakefield – Beam loading effect.
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Transverse Wakefields
Transverse wakefield potential is defined as the transverse
momentum kick experienced by a unit test charge following at a
distance s behind the same path with a speed of light.
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The transverse wakefields are dominated by the dipole mode
(m>1), for example, HEM11, HEH21,…
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Transverse Wakefields
An expression of the  transverse wakefield is approximately: 

( )02 1
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Where r’ is the transverse offset of the driving charge, a is the
tube radius of the structure, and k1n for m=1 nth dipole mode has
a similar definition as m=0 case. The unit of transverse potential is
V/Coulomb.mm.

The transverse wakefields depend on the driving charge as the
first power of its offset r’, the direction of the transverse wake
potential vector is decided by the position of the driving charge.
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Transverse Wakefields

Example:
Schematic of field Pattern 
for the lowest frequency 
mode – HEM11 Mode. 

H-T Instability  short range Multi-Bunch Beam Breakup Long range.  
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1 2 3

Input 
Coupler

Bead On 
Thread

OutputC
oupler Weight

Micrometer

Non-Resonance Perturbation



Massachusetts Institute of Technology                   RF Cavities and Components for Accelerators                 USPAS 2010 89

Non-Resonance Perturbation
Reflected wave amplitude is 

( ) ( )
( ) ( )zE
zP

zyxE
KzE ir

,,2
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Where K is a constant which depends on the bead, 
E(x,y,z) is the forward power flowing across the 
structure at z, Ei is the incident wave amplitude.

The reflection coefficient is defined as:
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For a constant gradient structure: ( ) ( )
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Bead Pull Setup
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1 2 3

Input 
Coupler

Output 
Coupler

Detuning 
Plunger

Nodal Shift Technique
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“Coupled Cavity” Structures
Linacs are coupled cavities in which many connected cavities are powered by one RF 
source.

Single cavity modes: ωmnp:

Z

r

θ

TMmnp (no Hz)

TEmnp (no Ez)

M = # of full period azimuthal variations   0,1,2,… 

N = # of half period radial variations   1,2,… 

P = # of full period axial variations   0,1,2,… 
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“Coupled Cavity” Structures
We can describe the properties of coupled chain using separate modes of single cavity
as they develop into “bands” of coupled systems.
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“Coupled Cavity” Structures
For a chain of N+1 cavities, each single cavity mode yields N+1 normal modes 
(Q→∞):
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Mode: q= 0,1,…N

Cell: n= 0,1,…N
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ω
1

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ω
1


ω

π2π0

N+1=9

Mode spacing:

k/N2 near    0, π

k/N  near     π/2



Massachusetts Institute of Technology                   RF Cavities and Components for Accelerators                 USPAS 2010 95

“Coupled Cavity” Structures
1. π/2 mode has special properties useful for long accelerating structures. 
This mode is generally insensitive to perturbations.

π/2 mode has field in cell n (Q→∞)

( ) tiN
n e

n
AA 0

20
2 ωπ
= cos

  

Optimize “accelerating Cells” for high shunt impedance. Qc of the “coupling 
cells” not very important.
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“Coupled Cavity” Structures
2. Losses due to finite Q excite small amplitudes (1/kQ0)in the coupling cells and
introduce amplitude droop [1/(k2Q0Qc)] in accelerating cells. Losses do not introduce
phase shift between accelerating cells up to order 1/(kQ)2 if all cells tuned to same
frequency.

“Amplitude Stabilized Structure”

3. In π/2 mode, frequency errors ∆ωn in cells of the chain produces only second order
(∆ωn ∆ωm) amplitude variations in accelerating cells.

“Phase Stabilized Structure”


	RF Systems for Accelerators
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96

