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Iq,[g Maxwell’s equations in differential form
I e —

V.D =p Gauss' law for electrostatics

V.B=0 Gauss' law for magnetostatics

VxH=J] +@ Ampere' s law
dt
VxE= s Faraday' s law
dt
op . ..
VJ= _8_ Lquation of continuity
[
D — gE ® Varying E and H fields are coupled

B=uH
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It

Electromagnetic waves in lossless media - Maxwell’s equations
Constitutive relations
oD D=ckE=¢¢E
VA= .
B B=uH=uuH

V>E="4r J=0FE

Sl Units

Maxwell

v.D

— p e J Amp/ metre?
. D Coulomb/metre?
. H Amps/metre
V B — O . B Tesla
" Weber/metre?
Volt-Second/metre?

Equation of continuity - Volt/metre
J € Farad/metre

a . u Henry/metre

1Y . %

v J Siemen/metre
. e
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"SRYAY,
Ih" E] Wave equations in free space
QiVA S

* Infree space

— 0=0=J=0
— Hence:
VxH=3+2_ P
dt dt
V><E:—§§
dt

— Taking curl of both sides of latter equation:

VXVXEZ—VXQQZ—leXBZ—MfQVXH
ot ot ot
_ E(O_D)
Moot at
0°E
VXVXE:—,UO&'&—Z
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"SRYAY,
Iq, ] Wave equations in free space cont.
) ,Ih

2
V><V><E——,uogE
ot

e |t has been shown (last week) that tor any vector A

wnere T VxVxA=VV.A-V2A
, 0% 9*  o°
v _6x2+8y2+822
2
E
VVE-VE=—pu,c—— g
ot

B There are no free charges in free space so V.E=p=0 and we get

82E
ot?

A three dimensional wave equation

V’E = Ho&
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L T']
Iq,[b Wave equations in free space cont.
) [ —_—

e Both E and H obey second order partial differential wave equations:

2
5 0°E
VE:,UOE—Z

i
ot2

VH = UyE

B What does this mean
— dimensional analysis ?

Volts/metre Volts/metre
2 = l’log

metre seconds2

— p.e has units of velocity?
—  Why is this a wave with velocity 1/ Vg ?
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"SRYAY,
Iq, ] Uniform plane waves - transverse relation of E and H
dLﬂh

e  Consider a uniform plane wave, propagating in the z direction. E is independent of x and y

aE:O a—E:O

o oy

In a source free region, V.D=p =0 (Gauss’ law) :

0E, ©OE, oE,

VE=—X+ + =0
OX oy 0z
E is independent of x and y, so
E ok E :
2 X-0, —=0 = %k, =0 =E,=0 (E, =constisnotawave)
OX oy 0z

B So for a plane wave, E has no component in the direction of propagation. Similarly for H.
B Plane waves have only transverse E and H components.
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Ih"[s Orthogonal relationship between E and H:

CIVA)

*  Foraplane z-directed wave there are no variations along x and y:

oH ca=a,| P Ty
VXH:—aX—y+ay Ny e ax£5y o )"
0z 0z . (an_ﬁAz .
_8D oz ox
Ll ox oy
=&l a °E, +a %4—3% oD
X at y at y VXH:X-I_E
® Equating terms: B and likewise for VXE=—,UO GH/@'[
_OHy oE, 5Ey:ﬂ OH
oz ot oz ° ot
oH, OE, OBy _  OHy
az ot az  °a

B Spatial rate of change of H is proportionate to the temporal rate of change of the orthogonal component of
E & v.v. at the same point in space
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Iq,[a Orthogonal and phase relationship between E and H:
I

Consider a linearly polarised wave that has a transverse component in (say) the y direction only:

_aHy _OE,
Ey = Eof(Z_Vt) oH 0z —¢ ot
OE =—x < OF
= g—L =—aE_ f'(z—-vt) oz L —g—2
ot , 0z ot
= H, :—ngOJ'f (z—vt)z +const = —evE, f (z - vt)
=—¢&VE,
H =—|—E,
Hy
B Similarly 6Ey aHx
. o at

B H and E are in phase and orthogonal

Massachusetts Institute of Technology RF Cavities and Components for Accelerators USPAS 2010



It

*  The ratio of the magnetic to electric fields strengths is:

2 2
S - Note:
== "=
JHZ+HZ Ho Ve

2 y E E 1
which has units of impedance B - u,H - U E —°
0] 0%~0
Volts/metre o
amps/ metre

B and the impedance of free space is:

7
Ho _ | 410 1500 23770

o 1 x107°
3
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Iq,[a Orientation of Eand H
I

*  For any medium the intrinsic impedance is denoted by 7

__E _E
T H, H
and taking the scalar product = X y
EH=E,H, + EyHy
=mHH,—7H,H, =0
so E and H are mutually orthogonal

X

B Taking the cross product of E and H we get the direction of wave propagation

ExH=a,(EH, —E,H,) AxB=a,(AB, - AB, )+
x\My Pz zZ=y

=az(77H§—77HX2) a,(A,B, — AB, )+
ExH=a,;H? a,(AB, - AB,)
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A ‘horizontally’ polarised wave

e  Sinusoidal variation of E and H
e EandHin phase and orthogonal H _ E
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blocko " Ehdesl

*  Every point in 3D space is characterised by
E,E,E,

— Which determine

H, H, H,
e and vice versa

— 3 degrees of freedom
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Iq,[g Power flow of EM radiation
) [

2
. Energy stored in the EM field in the thin box is: U _ gE
E=——
2
£ L H? Uy = Hol
H =
dU = L Ho T | adx 2
_ 2 E
= ¢E “ Adx H Y= _Ex
B Power transmitted through the box is dU/dt=dU/(dx/c).... & 0
«— A— dx

ExH

. Area A
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Iq,[a Power flow of EM radiation cont.
) [

dU = &£ Adx

2 2
Adt  A(dx/c) Uy 7

*  Thisis the instantaneous power flow
— Halfis contained in the electric component
— Halfis contained in the magnetic component
e  Evaries sinusoidal, so the average value of S is obtained as:

E =E,sin 277[(2 —vt)

_ Egsin®(z-vt)

n

S

2 2
S = E—ORMS(E§ sin(z —vt)): Eo
7] 21

B S is the Poynting vector and indicates the direction and magnitude of power flow in the EM field.
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Iq}:a Example
I S —

*  The door of a microwave oven is left open
— estimate the peak E and H strengths in the aperture of the door.
— Which plane contains both E and H vectors ?

— What parameters and
equations are required?

Power-750 W

Area of aperture - 0.3x 0.2 m
iImpedance of free space - 377 2
Poynting vector:

E2
S=——=pH? W/m?
1
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2
Power =SA= A = nH? A Watts

E - \/77 Power _ \/377 ™0 171vim
A 0.3.0.2

B=pu,H =47x10""x5.75=7.2uTesla
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* permittivity of free space  £,=8.85 x 1012 F/m
e permeability of free space  p,=4nx107 H/m
 Normally g, (dielectric constant) and p,

— vary with material

— are frequency dependant
e For non-magnetic materials m, ~1 and for Fe is ~200,000
e e isnormally a few ~2.25 for glass at optical frequencies

Constitutive relations

D=c¢E=¢¢,E

B=uH =y u,H
J=0oF

— are normally simple scalars (i.e. for isotropic materials) so that D and E

are parallel and B and H are parallel

* For ferroelectrics and ferromagnetics e.and m depend on the relative

orientation of the material and the applied field:

Bx Hyx  Hxy Hyx H X
By |[=| #yx My My | H Al

y L L microwave
B, Hu Mz Hz \Hq frequencies:
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Constitutive relations cont...

*  What is the relationship between ¢ and refractive index for non magnetic materials ?
— v=c¢/nis the speed of light in a material of refractive index n

— Forglass and manylplasticia‘ﬁ optical frequencies

e nv1.5 |
Ho&oly T

e g72.25
* Impedance is Idﬂ/\per\y@in a dielectric

What happens at the boundary between materials of different n, 1, ¢, ,

HoHy

77:
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Iq]l:a Why are boundary conditions important ?
I

When a free-space electromagnetic wave is incident upon a medium secondary waves are
— transmitted wave
— reflected wave
* The transmitted wave is due to the E and H fields at the boundary as seen from the incident
side
* The reflected wave is due to the E and H fields at the boundary as seen from the transmitted
side
* To calculate the transmitted and reflected fields we need to know the fields at the boundary
— These are determined by the boundary conditions
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It e ——

H1,€1,01

H2,E2,67

e Ataboundary between two media, m,e,s are different on either side.

* Anabrupt change in these values changes the characteristic impedance experienced by
propagating waves

* Discontinuities results in partial reflection and transmission of EM waves

e The characteristics of the reflected and transmitted waves can be determined from a solution of
Maxwells equations along the boundary
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"[s Boundary conditions

. The tangential component of E is continuous at a surface of discontinuity E H
. Except for a perfect conductor, the tangential component of H is
continuous at a surface of discontinuity >
— Hy=Hy EZt, H2t H2,€2,07
W The normal component of D IS continuous at the surface of a
discontinuity if there is no surface charge density. If there is
surface charge density D is discontinuous by an amount equal to A
the surface charge density. Dln Bln l”ll 81 Gl
, 171
- Dln,: D2n+ps
B The normal component of B is continuous at the surface of A
discontinuity D2n an Ur,E9,05
- Bln,: BZn
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qu{a Proof of boundary conditions - D,
I

Dnl T
Ay

Dn2 |

e Theintegral form of Gauss’ law for electrostatics is:

ﬁD.dA:ijpdv

applied to the box gives

D1 AXAY — D, AXAY + W4
As dz - 0,Wgqqe —> 0 Pence

= psAXAY

The change in the normal component of D at a

Dy = Dn2 = o5 boundary is equal to the surface charge density

Massachusetts Institute of Technology RF Cavities and Components for Accelerators USPAS 2010



Iq,[s Proof of boundary conditions - D, cont.
I e

Di1 —Dn2 = o5

* For an insulator with no static electric charge p.=0

Dnl — Dn2

B For a conductor all charge flows to the surface and for an infinite, plane surface is
uniformly distributed with area charge density r,

In a good conductor, s is large, D=eE~0 hence if medium 2 is a good conductor

Do = ps
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I " ] Proof of boundary conditions - B,
I

B Proof follows same argument as for D, on page 47,
B The integral form of Gauss’ law for magnetostatics is

— there are no isolated magnetic poles

{:}B.dA:O

=0

— Bnl — Bn2

B 1AXAY — B, AXAY + Wegge

The normal component of B at a boundary is
always continuous at a boundary
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Conditions at a perfect conductor

* Ina perfect conductor ¢ is infinite

e Practical conductors (copper, aluminium silver) have very large ¢ and field solutions assuming
infinite o can be accurate enough for many applications

— Finite values of conductivity are important in calculating Ohmic loss
e For a conducting medium
— J=cE
* infinite 6= infinite J
* More practically, o is very large, E is very small (=0) and J is finite

Massachusetts Institute of Technology RF Cavities and Components for Accelerators USPAS 2010



Ih"la Conditions at a perfect conductor
CLPAY

* It will be shown that at high frequencies J is confined to a surface layer with a depth known as the skin depth
e  With increasing frequency and conductivity the skin depth, ox becomes thinner

Current sheet ==
N l\x

OX

Lower frequencies,
S U e

Higher frequencies,

larger o

B [t becomes more appropriate to consider the current density in terms of current per unit with:

limJox=J, A/m
oX — 0
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Ih"[s Conditions at a perfect conductor cont.
QiVA S

< AX ;
>
Ay Hyl Hxl HyS‘J’ “1181961
Hy, H y&# H2,€5,0,
<
I_|x2
e Ampere’s law:
P priss—[[ (_Hj -
X
/O A/ A A/ / SZ
Hy27y+Hyl7y+HxlAX Hy3 Zy_Hy4 y_szAX—( szXAy
\ O
AsAy -0, oD, /ot AxAy — 0, J,AXAYy — AXJ,
Hg,—-H,, =Jg That is, the tangential component of H is discontinuous by

an amount equal to the surface current density
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WRYAY,;
Ia,[g Conditions at a perfect conductor cont.
QILVA

e From Maxwell’s equations:
— If in a conductor E=0 then dE/dT=0

— Since H
VxE=- ,ua—
dt
H,,=0 (it has no time-varying component and also cannot be established
from zero)
Hu=Jdg

The current per unit width, Jg along the surface of a perfect conductor is equal to the
magnetic field just outside the surface:

B H and J and the surface normal, n, are mutually perpendicular:

J, =nxH
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Ia,[s Summary of Boundary conditions
QILVA

At a boundary between non-conducting media

E,=E, nx(E;~E,)=0
Hy=Hy, o nx(H;—H,)=0
D,=D, n(D;-D,)=0
B, =B, n(B;-B,)=0
At a metallic boundary (large o)
nx(El—Ez)z 0
nx(H,-H,)=0
n(D; -D,)= p
n(B,-B,)=0
At a perfectly conducting boundary nxE, =0
nxH; =J,
n.D; = ps
nB; =0
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WRYAY,;
Iq, ] Reflection and refraction of plane waves
) ,Ib e

e At adiscontinuity the change in u, € and o results in
partial reflection and transmission of a wave

 For example, consider normal incidence:

Incident wave = E,e (@7
Reflected wave = E, e i(@+/)

B Where E, is a complex number determined by the boundary conditions
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WRYAY,;
Iq,[a Reflection at a perfect conductor
I e

 Tangential E is continuous across the boundary

* For a perfect conductor E just inside the surface is
Zero
— E just ontside the conductor must be zero

Ei+EI’ :O
:>Ei :—Er

B Amplitude of reflected wave is equal to amplitude of incident wave, but
reversed in phase
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Iq]':a Standing waves
I —_—

e Resultant wave at a distance -z from the interface is the sum of the incident and reflected
waves

E; (z,t)=incident wave + reflected wave
- Eellot-r) L g gllet+/)
_E (o718 _aif fpiot 19 _gld
_Ei(e e )e sin¢=e 2-e
= —2jE, sin pz e J

and if E; is chosen to be real

E;(z,t)=Re{-2jE; sin Bz (coswt + jsin wt)}
= 2E; sin fzsin wt
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Ia,[a Standing waves cont...
u‘ 1 g . ______________________________________________________________________________________________________________________________________|

E; (z,t)= 2E, sin Szsin ot

* Incident and reflected wave combine to produce a
standing wave whose amplitude varies as a function (sin
pz) of displacement from the interface

 Maximum amplitude is twice that of incident fields
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Reflection from a perfect conductor

resultant

Incident _
tran=smitted
reflectad




Iq,[a Reflection from a perfect conductor
I

 Direction of propagation is given by ExH
If the incident wave is polarised along the y axis:

Ei :ayEyi
— Hi :_axHxi
then
ExH=(-a,xa)E,;Hy
:+azEyini

That is, a z-directed wave.

For the reflected wave | x H = —a Eyl H Xi and Er ——a. E

So H r — _ax H Xi — H j and the magnetic field is reflected without change in phase
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Ih"[s Reflection from a perfect conductor

QiLVAY
2

e Given that cos¢:

Hy (z,t)= He i) 1y ellet+/)
=2H; cos Bz e’

As for E;, H; is real (they are in phase), therefore

H- (z,t)=Re{2H; cos f (coswt + jsinwt)} = 2H; cos Sz cos wt
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I““g H, Reflegtigndramia perfect conductor
CIVAN

* Resultant magnetic field strength also has a standing-wave distribution
e In contrast to E, H has a maximum at the surface and zeros at (2n+1)A/4 from the surface:

—— resultant wave ——resultant wave
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"SRYAY,
Iq, ] Reflection from a perfect conductor
) ,Ib

E; (z,t)= 2E; sin fzsin ot
H- (z,t)=2H, cos Bz cos ot

* Erand H; are /2 out of phase( Sinmt = COS((Dt )t/ 2)
* No net power flow as expected

— power flow in +z direction is equal to power flow in - z direction
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Iq’[s Reflection by a perfect dielectric
I -_—

o Reflection by a perfect dielectric (J=cE=0)
— no loss

 Wave is incident normally
— E and H parallel to surface

e There are incident, reflected (in medium 1)and
transmitted waves (in medium 2):
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rezultant wawye

S a— incident wavwve

_____ “ reflected wawe

tratzmitted waswe




QILUA

Ei =mH; :
E. =7n,H, S
e Continuity of E and H at boundary requires:
E,+E, =E,
H,+H, =H,
Which can be combined to give
1 1 1
H; +H, :_(Ei _Er): H =—F, :_(Ei T Er)
Uyl uy. 2
1 1 E —
= (E-E,)=—(E, +E,) — pe=—L =127
'h 2 Ei  m+m

= 772(Ei - Er): 771(Ei + Er)
— Ei(772 —771): Er(’72 +771)

Iq,[s Reflection by a lossless dielectric
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e Similarly Hi+H, =H,

Reflection by a lossless dielectric

TE:

E; i E; o 1

E

Massachusetts Institute of Technology

E, _E+E _E t1=2"

RF Cavities and Components for Accelerators
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Iq,[g Reflection by a lossless dielectric
I

e Furthermore:
H  E
H, E PH
Ho mE m 21,  2nm .
- — — H
Hi B myntm ny+m

And because p=p, for all low-loss dielectrics

Er _N&—v& _ M-y

PE = = = = ~PH
i \/E+ V& M+
. _ Er _ 2 81 . 2n1

2N

N 5
’Z'H = =

USPAS 2010

RF Cavities and Components for Accelerators

Massachusetts Institute of Technology



Iql[s Energy Transport - Poynting Vector
I —_—

Electric and Magnetic Energy Density:

For an electromagnetic plane wave Y _é

Ey (x,t)=Eg sin(kx — ot) :

B, (x,t)=Bgsin(kx — wt) X
B

where By =Eg/c Z

The electric energy density is given by

up = 1sOE2 = %SOEOZ sinz(kx —m¢)and the magnetic energy is

- B? = L EZ:uE Note: lused E =cB
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Iq,l'a Energy Transport - Poynting Vector cont.
I e —

Thus,

S=—FExB
Ho

The direction of the Poynting Vector is the
direction of energy flow and the magnitude ., ,

Poynting Vector (a 1 - aj:

st U W »
. ///// | X
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Ih"l.a Energy Transport - Poynting Vector cont.
CIVAY

Proof:
dUtoml - Uf()m]V - SOEZACdf SO
2 2
1 E°  Ey .
SZdUZSOCE2= = =% sin®(kx - or)
A dt UoC HoC

Intensity of the Radiation (Watts/m?):

The intensity, |, is the average of S as follows:

2 2
[=5=19 _to <Sin2(kx—(0[)>: L
ZHOC
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QO Ohm'’s law

Q Skin depth

/R =
_-'Jl:l

Hy —
—

- Current density decays
Er:-. - exponentially from the
P f'f surface into the interior of

i the conductor

-
I
1~
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Iq]l:s Phasors
) | —_—

Fictitious way of dealing with AC circuits

. ’ V.
i(¢) = Re{le ™" } R
R R+ jolL
| R=6 Q)
4 7 7
Measurable +
quantity Phasor (not real) v /\D L=0.2 mH
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Ih']':s Phasors cont.
QPN

d Phasors in lumped circuit analysis have no space
components

 Phasors in distributed circuit analysis (RF) have a space
component because they act as waves

v(x,t)=Re {VoeijBX }: e/®! Vo cos(wr = Bx)
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I'H.s Displacement Current
u" | { . ______________________________________________________________________________________________________________________________________|

Observe that the vector field 12F appears to form a continuation of the

c Ot
conduction current distribution. Maxwell called it the displacement current, and the

name has stuck although in no longer seem very appropriate.

We can define a displacement current density J, , to be distinguished from the
conduction current density J, by writing

cur]B:4—n(]+]d)
C

and define 1 0K
Ji="——
4 Ot

It turns out that physical displacement current lead to small magnetic fields
that are difficult to detect. To see this effect, we need rapidly changing fields
(Hertz experiment).
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qu{a Displacement Current
I —_—

Example: I=lyin a circuit branch having a capacitor

L =l
o R

The displacement current density is given by

C10E() 1 aQ(r)  I(¢)

]d_zm ot 4nCd ot  4nCd
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Ia,[a Displacement Current
u‘ ) \ |

The direction of the displacement current is in the direction of the current.
The total current of the displacement current is
AT

la=ASa=pca™

Thus the current flowing in the wire and the displacement current flowing in
the condenser are the same.

How about the magnetic field inside the capacitor? Since the is no real
current in the capacitor,

curl B = EG_E

c Ot

Integrating over a circular area of radius r,

Icur]B-da :l jw-da
C ot
S(r

s(r) )
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Ia,[s Displacement Current
u‘ ) \ |

l.hs= VcurlB-da= |\ B-ds=2nB-r

S(r) C(r)
2
r.b.szlg E.dazﬂa_E
c Ot c Ot
S(r)

nr? 8V_7U‘2 1 8Q_Tcr2 Il _47c[r2

T d ot od C ot od C ¢ 2

Thus the magnetic field in the capacitor is

anl 1° (r)= 2

2B -r=————> B(r
c 2 2
a ca

27IB-1”:47€—I—>B(1”)=2—I

C cr

This is the same as that produced by a current flowing in an infinitely long
wire.

(at the edge of the capacitor)
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Iqll.s Wave in Elastic Medium
I

Xy, X, X, Xpe1  Xnso

MMWW

-
— " P

un-2 un-l un un+1 un+2

Tmm-e- -

The equation of motion for nth mass is

2 — —]{(Un - Un—l)+ k(un+1 — un): k(un—l o zun T uH"'l)

By expanding the displacement u, ,,(t)=u(x,.,,t) around x,,, we can convert
the equation into a DE with variable x and t.

m

Massachusetts Institute of Technology RF Cavities and Components for Accelerators USPAS 2010



I“’[a Wave in Elastic Medium
u‘ ) L |

2
i ()=, £ avit)=ulx, o)+ 285m0 (g o) 1O7unt) (g
B 8XH 2 6X12]
o 52u(Xn t) A2 52u(XH ) _,m 52u(XH ) Ay 82u(XH )
o Ox’ Ax  or° Ox’

Define K =k Ax as the elastic modulus of the medium and p = m/ Ax is the
mass density. In continuous medium limit Ax —> 0, we can take out n,

o 82u(X,t) _x 82u(X,t)

ot® Ox?

We examine a wave equation in three dimensions. Consider a physical
guantity that depends only on z and time t.
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I“’{a Wave along z-axis
VA

52‘I’(Z,t) 2 82‘I’(Z,t)
=V
o’ 07°
We prove that the general solution of this DE is given by
‘P(Z,[)z f(Z—Vt)+ g(z+vt)

fand g are arbitrary functions.

Insert a set of new variables,
E=z—vt and nN=z+vt

Then
9, 8§ 0 611 0 8 0
Oz Oz 8%, Oz ON 82; on

and
0 8&’;8 8118 0 0

o oroE oron  eE " on
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i} —
9, 9, 8, 0
—> (85;811) ‘I’[aaanj v

2
thus a—‘P =0

onog

From this equation:

o oY oY
%G—Q =0— 8—§ = F(‘i)
- _[ FEME + 5(n)=1(2)+ £(0)

LP(Z,t)z f(z—vz‘)+ g(Z+Vz‘)
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It

F

Charges and currents

H‘}e

Aperture fields

Radiation
V e
$
Great Distance Approximate plane waves
33 H
€
Great Distance p

Approximate plane waves
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Ih"l‘a Radiation Antennas
QLAY

O O
C
Transmission line fed dipole Transmission line fed current loop

/ 7

Slots in waveguide _
Waveguide fed horn
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Iq]l:a Radiation
J)I!

In the time domain the electric scalar potential @ (r,,t) and the magnetic
vector potential A(r,,t) produced at time t at a point r, by charge and current

distribution P(r;) and J(r,) are given by

oy )= L J.p(li’f—fiz/c)dv

and v
A(rz,t)zuojf(ﬁ’f—ﬁz/c)dv
An 12
Sinusoidal steady state
1 o(r e~ /P2
(I)(Tz): ( ) dv
: e_JBr12 is the phase retardation factor
—/Bry
A(rz)zuo-“](fl)@ o
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b
We start with B=curl A and F =—grad ¢ — jo A

Charge conservation:

. 0 Sinusoidal steady state . .
dIVJ"'_p:O " — div J + jop=0
ot
Because pand J are related by the charge conservation equation, ¢ and A are also related. In
the time domain,

Sinusoidal steady state

div A+ Uogg % =0 = div A+ jopgged =0

t
with @ # 0
_div A
JOUEQ
Substituting f .
ubstituting or¢ H=icur]A
Ho
L= L grad div A— joA 1
= - c= o=
JOHpEQ /HOSO CB

= —Bﬁzgrad div A— jwA
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Ia}:s Near and far fields
QPN

We consider the transmission characteristics of a particular antenna in the form of a straight
wire, carrying an oscillatory current whose length is much less than the electromagnetic
wavelength at the operating frequency. Such antenna is called a short electric dipole.

7z P
r
T Avoiding spherical polar coordinates e y4
e
:ILI Coordinates transformation | |_ y
/\ strength of the radiated field X
JoP =1L

The components of the dipole vector in these coordinates are

Dy — psing |
P=| 0 |= 0
' p,| | pCOSO |
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Ia',':a Dipole radiation
QLAY

The retarded vector potential is then

— Bz
A= Ho J-]e dv

by z

|4

Q)
Where we used [3 =— . We also replace J]dv by IL. = j» P and obtain

C
- Bz
A="0(joP)*
4t Z
. 1 g &k | 0
curl A~ JOHQ 0 i i — JOUg JBPXG_JBZ
Ants Ox oy Oz Atz 0
Pe 0 peh

Thus the radiation component of the magnetic field has a g component only given by

. Pe P
H, =-Bw—=

Aty
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Ihnlza Dipole radiation
QILUA

Electric field:
: — B~
We start with divA ~ 04, _ joul, (-Be
Oz Amz
D 0
then grad divA = Ho /% Z(_ ]B) 0

Artz

The first term we require for the electric field is simply

0

_ 2 - B~
‘20) grad divA = ® Hoc 0
B Adnz P

A

The second term we require for the electric field is

h
2 - Bz X
— jnd = =2 K¢ 0
Az
__Pz_
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Ih“lza Dipole radiation
QPN

Electric field:

The electric field is the sum of these two terms. It may be seen that the z components
cancel, and we are left with only x component of field given by

2 — Bz
E :(D HoMXG M

X

Atz

The ratio of electric to magnetic field amplitudes is

E, _ppo’ o 1w
H, Po p Moo | €0

as expected for a uniform plane wave.
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IH}:& Dipole radiation
VA

We will now translate the field components into the spherical polar coordinates.

[3 in radial direction

P L
H inydirection
r
0
I 5 E inxdirection
since P, =-Psin® we have
2 ; —JBr - - JBr
Psin —
Ey=E. = o pol’ sinBe and Hy=1, = 0B sinBe
Anr Anr

. = 7). . L
The Poynting vector E(EXH ) is in r direction and has the value

 poBlP” sin 6

S =5 >
2(47[1“)

r Z

This vector (real) gives the real power per unit area flowing across an element of
area L to r at a great distance.
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Iql[s Radiation pattern
I

Dipole axis

Dipole |cngt]1 is Proportiona] to power dcnsity per

unit area at some fixed distance.

Note: No radiation takes place along the djpole axis, and the radiation pattern has axial
symmetry, with maximum radiation being in the equatorial plane.

Because of the non-uniform nature of the pattern we have the concept of antenna gain,
which for a lossless antenna is the power flow per unit area for the antenna in the most
efficient direction over the power flow per unit area we would obtain if the energy were
uniformly radiated in all directions The total radiated power is

T 2n T 2n
3 2
r :
W= J. .“%G{Sr}(rz sineaﬂdd)) :“O;B‘Z | jsun%ae Id(l)
T
0=0 $»=0

0=0 ¢=0

_ How Bl ‘2
1272
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IS
The average radiated power per unit area is
3 2
W K@ BP)
Anr®  4A8ntrt
Hence the antenna gain, g defined by

radiated power/unit area in the most efficient direction

g =
average radiated power/unit area over a large sphere

becomes

: o*B|P* 48n2 2 3
321° 1% PP 2

This result is the gain of a small dipole.

5
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Iq,[s Radiation resistance
I _-

Recall
_noo’BlP _ poopl|* 17

127 127

w

The radiation resistance R, is defined as the equivalent resistance which would
absorb the same power W from the same current |, i.e.

R I
2

W =

Combining these results we obtain

2
R - HowP L
67

Usingw =cf3, p=2mn/A, czl/w/uoso and M=+/lo/€g , we find

R, = %(BL)Z - (Z—Qn(ﬂz —=> R, ~20BL)Q (n=120mQ)
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Consider an arbitrary system of radiating currents Y, Z;
We start with the vector potential

_JBr
Alry)= i(i j J () dv

112

| 4

We will regard r,, fixed. For P, a
distance point, we replace r,, with r,

So A(fz): 4“0 ](fl)@_JBr12 dv
TCTZ

| 4

Approximations for ry, in e—JBflz require more care, sine phase differences in radiation
effects are crucial. We use the following approximation

=11 r; ® 11 COSY + 15 lp ® 1) =11 COSY
—JBry
c
> A(rz ) = Ho® = ° ](11)3+J[3r1 OSVdv  factor et BCosV  expresses the
47Tf2 phase advance of the radiation from
v the element at P, relative to the phase
at the origin.
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It

Moe—Jsz
We have A(r)="C—R
4TCf2

where B cos . -
R = ](fl)g- 1855V 1y, iR is called the radiation vector. It depends on the
internal geometrical distribution of the currents
’ and on the direction of P, from the origin O, but

not on the distance.

Moé‘_‘lﬁrz . .. . .
The factor ——— depends only on the distance from the origin O to the field point

4TCT2
P, but not on the internal distribution of the currents in the antenna.

The radiation vector ER can be regarded as an effective dipole equal to the sum of the
individual dipole elements Jd v, each weighted by phase factor »/B1C9V¥ which depends on

the phase advance Brl COSy of the element in relation to the origin, and direction OP,.

G_JBF - Br
Hy=BS— %y a0 = p< o,
Antr ¢ Anr
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Iq,[s Small circular loop
I
y4

Calculate the radiated fields and power at large
distance.

Using the symmetry the results will be independent of
the azimuth coordinate ¢.

The spherical polar coordinates of a point P, at a
general position on the loop are (a, n/2, ¢').

V¥V  being the angle between OP, and OP, with a unit
vector in the direction of OP, (cos ¢',sin ¢’,0) and
a unit vector in the direction of OP,
(sin®,0,cos0):

We have  COS\ =Sin6cos¢’

The radiation vector is then given by

filamentary current

QR(Q’Q): ](11),&¢€JBaSinGCOS¢'dV > 93(9,0)2 Id; - ad)ejﬂasinecoscb

!

2n 21
R(00)= | LacP*MO cos'dy  —> iR(G,O)zIaj (1+ Basin6cosd’)cos ¢’ diy’

0

° =D R (D) = Pnla®sin®
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Iq,[a Electric and magnetic fields
u! ] q ... .|

—JBr . 2 7 o: 2 ;
Be P _—Bafrsing 5 £, - ni, < B IsinG _p,

Amtr ¢ 4r 4r
Poynting vector

4 2 .2
5r=—1E¢He*=(Ba) n/<sin“ o
2 32,2

e:

Total power radiated

W = j jS rSIin0dordd Substituting for S, and using sin39zi(3sine—sin 39)
$=0

| (Ba)*
12

W =

Radiation resistance

1
Wzii)%,‘\l\z —> ®, J—g'(sa)“ —> R, =207%(Ba)' Q2 (n=1207Q2)
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