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Abstract. The objectives of this lecture are to classify and describe the var-
ious sources of emittance growth in an electron injector.

1. Introduction

There are four types of emittance in RF guns: thermal (aka cathode, εthermal),
rf (εrf ), space charge (σsc) and aberrations due to the optical focusing elements
(σoptics). These emittances are usually assumed to be un-correlated such that the
total emittance is given by,

(1) εtotal =
√
ε2thermal + ε2rf + ε2sc + ε2optics

A previous lecture described the thermal emittance in it’s three forms of thermionic,
photo-electric and field emission. This lecture discusses the rf emittance, geometric
and chromatic abberations of the beam, and space charge emittance growth. Along
the way, the concepts of projected emittance and slice emittance are introduced.

2. RF Emittance in Photocathode Guns

The rf emittance refers to a time-dependent focusing of the beam by the rf fields
at the entrance and exit of each rf cavity. The rf focusing kick occurs at the ends of
the cavities as a simple result of Maxwell’s equations as described by the Panofsky-
Wenzel theorem. This theorem simply states that the radial electric and azimuth
magnetic fields are proportional to the z- and t-derivatives, respectively of the of
the longitudinal field,

(2) Er = −r
2
∂

∂z
Ez

(3) cBθ =
r

2c
∂

∂t
Ez

Where the radial force is,

(4) Fr = e(Er − βcBθ).
where Ez and Er are the electric field components of a cylindrically symmetric rf
cavity. The change in radial momentum is the integral of the force,

(5) pr =
1
mc

∫
Frdt =

1
mc2

∫
Fr
dz

β
.

To a good approximation, the longitudinal rf field can be represented as,

(6) Ez = E(z) cos kz sin (ωt+ φ0),
1
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resulting in the following integrals for the radial momentum,

Fr = er

[
−1

2
dE(z)
dz

cos kz sin(ωt+ φ0)− 1
2c

d

dt
(E(z) sin kz cos(ωt+ φ0)) +

β

2
dE(z)
dz

sin kz cos(ωt+ φ0)
](7)

We assume the impulse approximation, such that E(z) is constant inside the gun
with a sharp cutoff at the cathode and gun exit, E(z) = E0θ(zf − z) . Then
the integral for the radial momentum is easily performed by relating time to the
z-coordinate,

(8) pr =
∫ tf

0

Frdt =
1
c

∫ zf

0

Fr
dz

β

At the exit iris of the gun the beam is relativistic, β = 1, and the radial momentum
kick becomes,

(9) ∆pr =
eE0r

2c
sin(kzf − ωtf − φ0) =

eE0r

2c
sinφe

Where the electron phase at the exit of the gun is φe . Writing this in terms of the
radial angle change gives the focal strength,

(10) ∆pr = γmc∆r′ ⇒ ∆r′ = r
eE0 sinφe

2γmc2
= − r

frf

and

(11) frf = − 2γmc2

eE0 sinφe
Therefore electrons at various longitudinal positions along the bunch length arriving
at different phases at the gun exit will experience different kicks as illustrated in
Figure 2, causing an increase in the projected emittance. Clearly the rf emittance
is a minimum when the rf focal length is independent of φe . This occurs when

(12)
dfrf
dφe

=
2γmc2

eE0

cosφe
sin2φe

⇒ 0

which occurs when φe = π
2 .

However, even when φe = π
2 there is still an increase due to the second-order

curvature of the rf waveform. For this reason, RF guns typically are operated with
bunch lengths no more than 10 degrees of rf phase long. The emittance growth
due to rf curvature can be greatly reduced by introducing a third harmonic of the
fundamental rf frequency . The above derivation follows that of Kim [] who also
gives the rf emittance for a Gaussian beam with an root-mean-square width of
exiting the gun at φe = π

2 due to this curvature effect,

(13) εrf =
eE0

2mc2
〈x2〉σ2

φ√
2

Additional useful analytic formulae and their accuracy are discussed by Travier.
This radial field is significant in a high gradient rf gun as shown in Figure 1 where

the longitudinal and transverse rf fields are shown for a gun with 100 MV/m peak
electric field on the cathode. In this case, the peak transverse field is 15 MV/m or
1/6 of the longitudinal field, corresponding to a focal length of only 10 cm for a
beam with exit energy of 5 MeV.
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Figure 1

Figure 2

The accuracy of this analytic calculation of the strong negative rf focusing can
be seen in Figure 3 which shows the results of a numerical ray trace calculation
[ref:GPT] for a gun with a 115 MV/m cathode field.
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Figure 3. Electron trajectories for a rf gun with a cathode field
on 115 MV/m as computed by General Particle Tracker Program,
GPT.

Of course this strong de-focussing at the gun exit requires compensation by an
equally strong focusing, which is usually provided by a solenoid with a longitudinal
magnetic field. It is interesting to note that the dual role of this solenoid. For it
not only cancels the strong negative rf lens, but it also plays the crucial function
of aligning the beam’s transverse properties longitudinally to reduce the bunch’s
projected emittance. This concept of emittance compensation is discussed next.

Figure 4. Diagram of a simple linear model of and rf gun and
solenoid to be used in class exercise.

Class Exercise: Using the ABCD-matrix formulism of linear optics, derive the
2x2 transformation from the cathode, through the gun exit and a thin focussing lens
to a view screen located after the gun. The relevant variables of the geometry are
shown in Figure 4. What are the conditions for creating an image of the cathode
surface at the screen location? Describe how this simple model can be used to
determine the uniformity of the cathode’s quantum efficiency.

3. Chromatic Aberration of the Solenoid

The section discusses the geometric and chromatic aberrations of the solenoid’s
long axial magnetic field. The typical location of the solenoid after the gun is shown
in Figure xy. This lens cancels the strong defocus at the gun’s exit and compensates
for the space charge emittance.
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The transverse, trace-space emittance is given by

(14) εx =
√
〈p2
x〉〈x2〉 − 〈pxx〉2

where px = βγx′ = xαk sinφ, for the rf lens.
Consider a solenoid producing a uniform axial magnetic field. For electrons

moving along the magnetic flux lines there is a focusing strength K,

(15) K =
B(0)
2Bρ0

where B(0) is the solenoid field and Bρ0 is the beam’s magnetic rigidity. Which in
useful units is given by,

(16) Bρ0 = 33.356p(GeV/c)kG−m.

Due to the beam’s rotation in the axial field, the x- and y-transverse trajectories
become coupled and a 4x4 matrix is necessary for an optical calculation. However,
if one rotates the x-y coordinates with the beam then the two planes decouple.
In this rotating frame the transformation becomesTransport Manual, slac-r-091,
pp.104-106,

(17) R(−KL)R(solenoid) =


C S/K 0 0
−KS C 0 0

0 0 C S/K
0 0 −KS C


with C = cos(KL), S = sin(KL), L the magnetic field effective length, and the
rotation matrix,

(18) R =


C 0 S 0
0 C 0 S
−S 0 C 0
0 −S 0 C


In the beam frame the focal strength, element R21, is

(19)
1
fsol

= K sinKL

For small values of KL,

(20)
1
fsol

= K2L =
(
B(0)
2Bρ0

)2

L

Therefore the focal strength of a solenoid is proportional to the axial field squared,
this is unlike a quadrupole’s strength which scales linearly with the field.

The emittance growth in the solenoid due to the beam’s energy spread can be
computed using the symmetric beam matrix, σ, and the transformation for a simple
lens. The beam matrix is defined as

(21) σ =
(
σ11 σ12

σ12 σ22

)
The transformation of the beam matrix through a simple lens is given by

(22) σ(1) = RTlensσ(0)Rlens =
(

1 0
−1/f 1

)(
σ11 σ12

σ12 σ22

)(
1 −1/f
0 1

)
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Figure 5. The longitudinal field, Bz, vs. z for the LCLS gun
solenoid. The effective length of the magnetic field is 19.35 cm.

Performing the matrix multiplications gives,

(23) σ(1) =
(

σ11 −σ11
f + σ12

−σ11
f + σ12

σ11
f2 − 2σ12

f + σ22

)
The change in the beam matrix due to a variation in the beam momentum is

(24) ∆σ(1) =
dσ(1)
dp

∆p =

(
0 −σ11

d
dp ( 1

f )∆p
−σ11

d
dp ( 1

f )∆p [...]

)
The emittance due to the momentum spread is then the given by the differential
form of the emittance formula,

(25) εn,chromatic = βγ
√

det ∆σ(1) = βγσ2
x

∣∣∣∣ ddp
(

1
f

)∣∣∣∣∆p
Where we have used σ11 = σ2

x. As described earlier, in the rotating frame of the
beam the focal length is given by

(26)
1
f

= KS = K sinKL

And taking the derivative gives,

(27)
d

dp

(
1
f

)
= (sinKL+KL cosKL)

dK

dp
= − (sinKL+KL cosKL)

K

p

Inserting this into the expression for the emittance results in the final result,

(28) εn,chromatic = βγKσ2
x (sinKL+KL cosKL)

σp
p
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Figure 6. The chromatic emittance of the LCLS gun solenoid vs.
the rms beam size at the solenoid for 3, 6 and 20 KeV rms energy
spread.


