3.2 Cryogenic Convection Heat Transfer

Involves process of heat transfer between q
solid material and adjacent cryogenic fluid

Classic heat transfer problem (Newton's law)
q(kW/m2) = h (T,- T,) Mm¢—s (=>

Configurations of interest

= Internal forced flow (single phase,T; =T,..,)

= Free convection (single phase, T, =T )

= Internal two phase flow

= Pool boiling (two phase)
Understanding is primarily empirical leading to
correlations based on dimensionless numbers T =

Issue is relevant to the design of:

. Liquid
= Heat exchangers >y T
=
= Cryogenic fluid storage @
= Superconducting magnets
= Low temperature instrumentation N )
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Single phase internal flow heat transfer

Forced
Convection

Classical fluid correlations Q

= The heat transfer coefficient in a classical fluid system is generally
correlated in the form where the Nusselt number,

where, Nuj = hD f and D is the characteristic length
= For laminar flow, Nqu = constant ~ 4 (depending on b.c.)
= For turbulent flow (Rey > 2000)
H;C

Nu, = f(Re,,Pr)=CRe} Pr" and Pr= ”
f
= Dittus-Boelter Correlation for classical fluids (+/- 15%)
4 2
Nu, = 0.023Re’5 Pr’®
Note that fluid properties should be T 2T

computed at T, (the “film temperature”): T;=— 5 f
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Johannes Correlation (1972)

Improved correlation
specifically for helium
(+/- 8.3%)

—0.716

Nu, =0.0259 Re% Pr% _-ll_-—s

f

= Last factor takes care of
temperature dependent
properties

= Note that one often does
not know T;, so iteration
may be necessary.

2 v

Example

0.050

0.010

T T T T T T T 11

Predicted from best fit of
——— -~ data correlation

o P=3t09.6atm.Experimental
a P=9.8t020atm. Data

e P=6atm. ]

0o o

04 06 0810
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Application: Cryogenic heat exchangers

= Common types of heat exchangers used
In cryogenic systems RAVAYAYAYAN

LI A A

= Forced flow single phase fluid-fluid

= E.g. counterflow heat exchanger in
refrigerator/liquefier

= Forced single phase flow - boiling liquid
(Tube in shell HX)

= E.g. LN, precooler in a cooling circuit

= Static boiling liquid-liquid
= E.g. Liquid subcooler in a magnet system
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Simple 1-D heat exchanger

= Differential equation describing the temperature of the fluid in

the tube:
e o, hP(T, —T,)=0
= For constant T,, the solution of this equation is an exponential
T,-T; |

S R ]
Increasing m

hP
T,—T, =(T,—T;),exp| ——=X
s— T =(T,=T¢)g p( e j
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He (T, =300 K) He (T; = 80K)

Liguid nitrogen precooler

aN

Assumptions & givens
= T, isaconstant @ 77 K (NBP of LN,) LN, (T = 77 K)
= Helium gas (C, = 5.2 kJ/kg K: p= 15 x10®Pas; p = 0.3 kg/m3, k = 0.1

W/m K)

= Allowed pressure drop, Ap = 10 kPa Properties are average values
= Helium mass flow rate =1 g/s between 300 K and 80 K

Find the length and diameter of the HX (copper tubing)
Total heat transfer:

Q= me(Tm _Tout) =1 g/s x 5.2 J/g K x 220 K
Log mean AT: = 1lad W
A7 o ATi(x=0)-AT,(x=L) (35077 80-77) K

"™ (AT (x=0 -
In( X %Tf (X:L)J In [(300-77)/(80-77)]
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Liguid nitrogen precooler (continued)

UA=hzDL = QAT = 1144 W/51 K = 22.4 W/K
Im

The heat transfer coefficient is a function of Rey and Pr = 0.67

Assuming the flow is turbulent and fully developed, use the Dittus Boelter
correlation

Nu, _hb_ 0.023Re}’ Pr*® and Re, = 4m

Ki Du
Substituting the Rey and solving for h
0.8
Am j opos _ 00247 X 0.1 W/m K X (103 kg/s)°8

D u

k
h=0.023— (
D (15 x 106 Pa s)08 x D18

= 0.07/D(m)*8
hzDL = 0.224 x (L/D%8) = 22.4 W/K

or L/D9%8 = 100 m0-2

1 equation for two unknowns
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Liguid nitrogen precooler (continued)

= Pressure drop equation provides the other equation for L & D
2

AD = L m
P= 2D | A ; Aoy = 77D%4 and f ~ 0.02 (guess)

flow

Re, = A4m

D u
4 x 0.001 kg/s

Substituting for Rey and f n X 0.0062 m x 15 x 10 Pa s
~ 13,700
Ap = 0. 0]_6m_L _0.016 x (103 kg/s)z(l—j
=
p D 0.3 kg/m3 D®

L 2nd e '
guation for
= 8| — |+
Ap=5.33x 10 (D5j two unknowns

Eq. 1: L =100 D% — Ap=5.33x10%/D42  with AP = 10,000 Pa

Substitute:

D = [5.33 x 106/4p]/42 = 6.2 mm|and L = 100 x (0.0062 m)°¢ ={1.7 m
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Single phase free convection heat transfer

Q l or Q Q

= Compressible fluid effect: Heat transfer warms the fluid near the
heated surface, reducing density and generating convective flow.

= Free convection heat transfer is correlated in terms of the
Rayleigh number,

Nu, = f(Gr,Pr)~ CRa; where Ra =GrPr=

gpBATL
D, v

where g is the acceleration of gravity, p is the bulk expansivity, v is

the kinematic viscosity («/p) and Dy, is the thermal diffusivity (k/pC).
L (or D) are the scale length of the problem (in the direction of g)
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Free convection correlations

= For very low Rayleigh
number, Nu = 1
corresponding to pure
conduction heat transfer

= For Ra<10% the
boundary layer flow is
laminar (conv. fluids)

Nu, ~0.59Ra’%

= For Ra>10% the
boundary layer is
turbulent

Nu, ~0.1Ra**®

B [0] e

USPAS Short Course

Free convection correlation for low
temperature helium

|

a - Klipping, Kutzner [211]

b - Sato (241
¢ - Hilal £22]

d - Irie et al. [21]
e - Nu=0.0176 (GrPr)o'?’8 /d
f - Nu= 0.615 (GrPr)9-258

I l I

Boston, MA 6/14 to 6/18/2010

10



Pool Boiling Heat Transfer (e.g. Helium)

Factors affecting heat
transfer curve

= Surface condition
(roughness, insulators,
oxidation)

= Orientation
= Channels (circulation)
= Time to develop steady

state (fransient heating)

Heated
Surface

USPAS Short Course

He I

T e————— 1 Gl o(‘ooo

film
boiling
o.l F

nucleate
boiling ] f

0.01 |

q(W/cm?)

T

0.001

. ——
convection VAPOR
cooling

0.0l 0.1 I 10
A T(K)

Note: Other cryogenic fluids have basically
the same behavior, although the numerical
values of q and AT are different.
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Nucleate Boiling Heat Transfer

= Nucleate boiling is the principal heat transfer mechanism for
static liquids below the peak heat flux (g* ~ 10 kW/m? for helium)

= Requirements for nucleate boiling
= Must have a thermal boundary layer of superheated liquid near the

surface
B K, AT

" ] ~ 110 10 um for helium

= Must have surface imperfections that act as nucleation sites for
formation of vapor bubbles.

RN {8

VAV S S S S S /7/—?//

(a) (b) (c)
USPAS Short ——oTwray IV VT AT WU VU LU VLY 12




Critical Radius of Vapor Bubble

P 20 .
: R =R +T o is the surface tension

= Critical radius: For a given T, p, the bubble radius that determines
whether the bubble grows of collapses

= r>r.and the bubble will grow
= r<r.and the bubble will collapse

= Estimate the critical radius of a bubble using thermodynamics

= Clausius Clapeyron relation defines the slope of the vapor pressure line
in ferms of fundamental properties

dpj _As_ hy  hgp
dT ), Av T(v,-v_ ) RT?

If the gas can be approximated as ideal
and v, » Vv,
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Critical radius calculation

= Integrating the Clausius Clapeyron relation between

p and p, + 2c/r

20‘( hgAT /RT? )1 20RT/
r=—--»I\e" -1} =
ps hfg pSAT

=  Example: helium at 4.2 K (NBP)

2.0

T T T

HOMOGENEOUS
NUCLEATION LIMIT

= Empirical evidence indicates that AT ~ 0.3 K
= This corresponds to r. ~ 17 nm
= Number of helium molecules in bubble ~ 10,000

= Bubble has sufficient humber of molecules to be treated as

a thermodynamic system
= Actual nucleate boiling heat transfer involves

heterogeneous nucleation of bubbles on a surface. This is
more efficient than homogeneous nucleation and occurs

for smaller AT,

USPAS Short Course Boston, MA 6/14 to 6/18/2010
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Nucleate Boiling Heat Transfer He I

240 grit ground
X 600 grit ground

o

o 03 pm mirror

& 320 grit lapped
® 240 grit lapped
v 100 grit lapped
+ 80 grit lapped

O roughness [0um

v roughness Spum

(W/cm2)

a roughness lpm

@)
o4
1

m polished

o unprepared dry clean

0.00l 4
0.0l 0.1 |

AT (K)

Note that h., is not constant because Q ~ AT?°
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Nucleate Boiling Heat Transfer Correlations

ol

The mechanism for bubble formation and detachment is very complex
and difficult to model

Engineering correlations are used for analysis

Kutateladse correlation

1/2 C 1727706 2 37270125 0.7
i] _3.25x10 p'p'[aj X g(p'jigj L/2
Jdpo, hy ok L 9p) H, 9o, (ng| )1

Rearranging into a somewhat simpler form,

a3 T 2] e e

fg
1/2
o)
where % :(g—,qj q(W /cm?) =5.8AT*° For helium at 4.2 K

0.3125
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Peak Heat Flux (theory)

= Understanding the peak nucleate boiling heat flux is based on
empirical arguments due to instability in the vapor/liquid flow

Instability in the vapor-liquid boundary

A

= Instability due to balance between surface energy and kinetic energy

2o Yoy, 2
c? = — (v, —v,)
Moc+p.) (o +p,) L

Transition to unstable condition when C2 = 0
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Peak Heat Flux Correlations

s Zuber correlation:

q* ~ thgpv|:

= Empirical based on Zuber Correlation

alp-p,

2

Py

sl

1y
pl +pv

q ~ 0-16hfgpv% lo9(, -, )]%‘
~ 85 kW/mé2for He I at 4.2 K

= Limits:

= T—T.q"—0since hy;» 0Oand o ~0

= T—0;q* ~p,l/? (decreases)
= g%, Near 3.6 K for LHe

USPAS Short Course

}%

q*/Xp,(cm/sec)

2| ]
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Film Boiling

= Film boiling is the stable condition when the surface is blanketed
by a layer of vapor

= Film boiling heat transfer coefficient is generally much less that that
in nucleate boiling

= Minimum film boiling heat flux, g, is related to the stability of the
less dense vapor film under the more dense liquid

\/\quﬂd/
——

vapor ~ 10 um

I |

“Taylor Instability" governs the collapse of the vapor layer
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Film Boiling Heat Transfer Correlations

= Factors affecting the process
= Fluid properties: C. hfg, G, P, Py
= Fluid state: saturated or pressurized (subcooled)
= Heater geometry (flat plate, cylinder, etc.)

m  Breen-Westwater correlation

1/8 1/4 1/2
hfb( > J( {7, T, j ~0.37+0.28 — 2
a(pi-p)) \Kplo—per) =525 p2— 0

Where, lh,, +0.34C (T, -T,)f
h

= Simplified form for large diameter k

1/4
~ a(o, -2 )Y (Kip, (o —p. )l ;
S R |
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Minimum film boiling heat flux

« Minimum film boiling heat ~ Q/S, W/cm? LHe @ 4.2 K
flux is less than the peak 4
heat flux

~0.9

= Recovery to nucleate %‘ """"" e I
boiling state is associated 3
with Taylor Instability.

o % | Omib
qub — Olthg Iov|: go-(pl IOZV )i|
(IOI + PV)

= Dimensionless ratio:

g

te boilin
ion boiling

Film boilin

Transi

v

o ~4 (TS_Tb)I K

I
Ut _{ Ly } ? ~0.36 for LHe @ 4.2 K
- ~01@22K
_|_
q pl IOV NI@TC:52K
~ 0.09 for LN, @ 80 K where g* ~ 200 kW/m?

*
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Prediction of Nucleate/Film Boiling for Helium

1000
Vildi
/1
100 ' -
4 D =.00l cm.
Breen & Westwater // [D = .002 §$
Correlation V/ D'= 004 ¢
- |~D=. cm.
P =1 atm. /A A, D =.006 cm.
) = .0l cm
10 / /A PO
7 /ﬂ "D =.02 cm
"E | /‘ / [I)= 04 (:1m
L O Predicted critical heat flux /;// /y 7, | D = 0.1 E(.‘.m
2 ~ D210 cm
pat 74 2
S 10 d;/ 1 ///
< d/[’// (For flat plates and lar
o|g 7' 7/ p ge
d/// diameters, use D 2> |.0 cm.)
o
0.1
| (The points of minimum film
boiling are given by either the
correlation of Lienhard &
- Wong or of Zuber, et al.)
0.01
/ / Kutateladze
// / Correlation
/
0.00 A / /

.00lI
0.000l 0.00l 0.0l 0.10 (.0 10 100 1000 10,000 100,000
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Experimental Heat Transfer (Helium)

100C 1 I
Frederking J?

D =.055 cm.u,l
__D=.130 em—__

D= .215 cm.l
100 - D=.312 cm:
D=.510 cm.-|

O Experimental critical heat flux
Predicted critical heat flux

10 Breen 8& Waestwater

é Correlation
|

/ l ~D=.04 cm.
i _| o=ouem.

17~D2 1.0 cm.
|

Eastman & Datars!_

watts/cm?®
o
T
]
/
\S
A

- !
. =" o f Film b S T
o|d Nucleate Karagounis 7 Regime
Region P=laftm.| : -
P=1/2 atm. \‘\“*-Lyonl[):l,o cm
0.1 / -t =11 f
/ (The points of minimum film

Lyon Kutateladze boiling are given by either the ]

yo Correlation correlation of Lienhard &

/ / Wong or of Zuber, et al.)

0.01

// [7"‘“ Reeber -

0.00! : A A
0.000I 0.001 0.0 ol0 ' 10 10 i00 1000 10,000 100,000

AT, °K
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Prediction of Nucleate/Film Boiling for Nitrogen

|00 S il
= [ o
O Predicted critical heat flux
N N — E—— | —
10 |
5 Kutateladze -
E L 4 b Correlation __|
< p=2
g AL e P& bl
o P=1 ;
EJ P = i ‘
ol | . *'g j y
P =1.5-
.0 P = 1.0, |
S ;S P =0.5- _Breen & Westwater
e Correlation | |
W, . |
(For flaf plctes and large |
diameters, use D > 1.0 cm.)J
T
(The points of minimum f11m bmlmg are given by ecither
the correlation of Lienhard & Wong or of Zuber, et al,)
0.1 | | | 1 | | [ ! S
0.0l 0.10

10 100 1000
AT, °K

USPAS Short Course Boston, MA 6/14 to 6/18/2010 24



Experimental Heat Transfer (Nitrogen)

100 il : [ ] /A
_ | Frederking /
D =.00136 cm. /
D= .00312_{:.[(}:___ .
O Experimental critical heat flux Merte ia Q= Q021 em,
Predicted critical heat flux Clark ——— KUTOTQEQQZB
Roub Correlation
oubeaqu——, Y / | -
| Broml /|
Flynn Vs romiey
£ Cowley Hsu 8 Westwater —| -
L et al. | %
é — I
5
x Fritz 8-
- Johnson Bradfield;
oig || et al. —— —
Mikhail [
~Flynn
et al
1.0 Ruziclka
“C?w‘}fiy,
e .
Huseld Westwater I
a e;)aet:rns Weil &Corre‘ahon (The points of minimum film
| Lacaze boiling are given by either the
| " correlation of Lienhard &
\Lapin,ei al. Wong or of Zuber, et al.)
o A | 1 1]
0.01 Q.l 1.0 10 100 000
AT, °K
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Internal two phase flow

= Heat transfer depends on
various factors

= Mass flow rate
= Orientation w/r/t gravity
= Flow regime
= Quality () g
= Void fraction (o)

= Total heat transfer rate

QT :ch +Qb

where: Q. is convective and Q, is
gravity enhanced boiling.

Depending on factors above, either
contribution may dominate
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Horizontal flow two phase heat transfer

= Consider the case where gravitational effects are negligible
= Horizontal flow at moderate Re so that inertial forces dominate

= Correlation based on enhanced Nusselt number

Nu,,

1 X 0.9 0.1 0.5
— f where Ztt:(;] (ﬂ] (&j
N0 (%) =) ) 15

e
and Nu, =0.023Re}*Pr)* - Re, _mi-x) E

/uLArow

Test section 3 Pressure = 1.1 atm
Typical correlation (de la Harpe): oo, 7 0 I o e

(NU]exp OX oy E LXS :2

(Nu)culc \\ M + 17

Nu,, 1 YO

~ AZtt —> 1 fOl" XTT l(lr'ge \\\ Q&DQ+
NU A0x
L S o,

with m ~ 0.385 and A ~ 5.4 |~ L, "

02 1.0 10 100
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Vertical channel heat transfer

Main difference between b

this problem and pool boiling / Bl

is that the fluid is confined  uomer now A% 5530

within channel A saE |

At low mass flow rate and o 0SUod] 3

self driven flows (natural FosneT)] 3
circulation) the heat o=l B0
transfer is governed by subpte flox—BOS2ES S | cororin o
buoyancy effects ngz”?"i%g ] e
Process is correlated against s ) =
classical boiling heat P i Y ;
transfer models /E’ R

In the limit of large D the ° g4

correlation is similar to pool
boiling heat transfer
(vertical surface)
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Vertical channel maximum heat flux

e - | |
Z=254 cm
7] T 0.5 .
5.08cm
~ 04+ x 10.16 cm < -1
NE <
S o3l -
q N * 20.32cm
" o2l . ]
/ o ]
o | L
0 0.1 0.2 0.3
—él-—/w—-l_é a GHANNEL WIDTH (cm)
Critical flow in an evaporator
. : b
EmPIPICfl observations o heoy | gz, (1_ In[l—i_ZC(ﬂ_l)]j 2 )
= g*~wforsmallw Ji 2 | p-1 2.(8-1) o,

= q*~zV2forw/z<0.1

" 3:1~ constant for w/z and y_ = m%j “Critical quality” .
X~ 0.3 for helium

-
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Example: Cryogenic Stability of Composite
Superconductors (LTS in LHe @ 4.2 K)

Used in large magnets where flux jumping and other small disturbances
are possible and must be arrested

General idea: in steady state ensure that cooling rate exceeds heat
generation rate (Q > 6)

Achieved by manufacturing conductor with large copper (or aluminum)
fraction and cooling surface

Lower overall current density 6/s |
Potentially high AC loss (eddy currents) — I*R/S

Current Fully
S r‘ing nor‘mal

Composite Conductor

»
»

Copper/Aluminum stabilizer Ty (K) Tes (K) T.(K)  T(K)

Insulating spacer (G-10)

. —
ISC >
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Cryogenic Stability (LHe @ 4.2 K)

Case 1: Unconditional stability, recovery to fully superconducting state
occurs uniformly over length of normal zone

Case 2: Cold End recovery (Equal area criterion): Excess cooling capacity
(area A) > Excess heat generation (area B)

Q/S is the LHe boiling heat
Q/S / transfer curve for bath cooling
or A normalized per surface area
6/S 2
%
/ ) NI 1 G/Sis the two part heat generation
e Curve for a composite superconductor
7 T¢s is the temperature at which T, = T,
T (K) T (K) T (K) T (K)
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Transient Heat Transfer

= Heat transfer processes that occur on time scale short compared to
boundary layer thermal diffusion. Why is this important in cryogenics?
(Dy, (copper) ~ 104 m?/s @ 300 K; ~1m2/s @ 4K)
= Normal liquid helium has a low thermal conductivity and large heat
capacity
K,
D= E ~3x108m?/s (LHe @ 4.2 K)

Oy, = E(Dt 2 ~3x104tY2 [m] for LHe @ 4.2 K
2 ~ 1.5 t12 [m] for copper @ 4.2 K

. hL
= Lumped capacitance condition: Bl = << 1 ~10L [m]

= Note that this subject is particularly relevant to cooling
superconducting magnets, with associated transient thermal processes
= Important parameters to determine
. AE q 4t" (critical energy)

- surface temperature dur'mg\q/I heat Tr'a er
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Transient Heat Transfer to LHe @ 4.2 K

Time evolution of the temperature difference following a step heat input:
Steady state is reached after ~0.1s

NONN \ . .. \ \‘ : o ™ .
N \\ \\“\\x\u\\\ \'\.‘_\\\;\\ \»\\ \\‘ _ R :
:\\ \\\ \ : ““: \: N N N
QNN
N RN et aath

N ‘.. N AN ’\\\ R

IOO T TT”H[‘H._'f - ‘l Llﬂ\l{h ‘ﬁ T ill‘”” \\¥ ITH'HI] \‘\I T TTTT T T T7TT P TrTrTTT

oidtt

. STEADY STATE  _
FILM BOILING

i
-4
........................ PEAK . -« _]
............ STEADY STATE

© NUCLEATE -

* BOILING,
..... o DT : -
»C{)"W‘ Lo v - R =
- i DD U e
. STEADY STATE . T
0.3 ) ,‘&%?‘QWH,O 7

- TRANSIENT CONDUCTION
HEAT TRANSFER

1
i

0/Omﬂ,,o}"p/% ... NUCLEATE BOILING -

0.1 W/cm? calculated T

O' 5:-:—-0.05\ /M ‘E

el bl Lot Lt rrrl Lol Lol Ll
1077 1076 1075 10 4 1073 10”2 107! 10°

t(s)
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Critical Energy for Transition to Film Boiling

Hypothesis: The “critical energy” is determined by the amount of
energy that must be applied to vaporize a layer of liquid adjacent
to the heated surface.

= Energy required AE = ph &,
|

= Layer thickness determined by diffusion

:%(th)%

= Critical flux based on heat diffusion:

10

T K, N
7 h ] 0% g
q 210I fg(pICAt ] E :

~0.09 At2[W/em?] @ 42K '

q=0.127 -t "0.4

! | ) Lo | L1 L

10”5 04 0°3 10°2

At¥(s)
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Surface Temperature (Transient HT)

= During transient heat transfer, the surface temperature will be higher
than the surrounding fluid due to two contributions:
= Fluid layer diffusion: transient conduction in the fluid layer will result ina
finite femperature difference

= Kapitza conductance: At low temperatures, there can be a significant
temperature difference, AT,, due to thermal impedance mismatch (more on
this subject later). This process is dominant at very low temperatures, but
is small above ~ 4 K, so is normally only important for helium systems.

= Fluid layer diffusion equation:
O°AT OAT
f 1 f.p K

ox> Dy ot ' pC,

= Boundary conditions:

= AT, (x,0) = O; initial condition Solution is a standard second order
= AT (infinity, t) = O; isothermal bath differential equation with two
= q=-kidAT,/dt),.o: heat flux condition spatial and one time boundary

= Solid is isothermal (Bi = hL/k <« 1) condition.
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Transient diffusion solution

= Integrating the diffusion equation:

12 > q
AT =12 Dt exp| — X1 xerfc X - 7
bk I 4D, t 2(D, 1}

><V

s Evaluating at x = O (surface of heater)
12
20 t
AT, (x=0)=
=0~ 2 o5
= The transient heat transfer coefficient can then be defined
12
h _ CI _ \/; /OCpkf
AT, 2 t
0.1 ,
h~— : kW/m2K for helium near 4 K
Jt
Att=10 ps; h~30 kW/m? K and for q = 10 kW/m?; AT; ~ 0.3 K
Note: this value of h >> h__ (nucleate boilinoq HT coefficient)
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Summary Cryogenic Heat Transfer

= Single phase heat transfer correlations for classical fluids are
generally suitable for cryogenic fluids
= Free convection
= Forced convection
= Two phase heat transfer also based on classical correlations
= Nucleate boiling
= Peak heat flux
= Film boiling
= Transient heat transfer is governed by diffusive process for AT
and onset of film boiling
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