3. Nonlinear effects in beam transport

3.1 Spherical aberrations

3.2 Beam emittance growth due to spherical aberrations
3.3 Beam emittance growth in drift space

3.4 Beam uniforming in drift space

3.5 Beam emittance growth in a focusing channel
3.6 Beam halo formation

3.7. Non-uniform beam equilibrium



3.1 Spherical aberrations

So far we analyzed space charge dominated beam transport in linear approximation to

space charge forces. In the presence of linear focusing field, the beam emittance
remains constant. Realistic focusing elements posses strong aberrations, which result in

distortion of phase space area, occupied by the beam. Among others, the spherical
aberration cannot be eliminated, and therefore, has the most significant effect on particle
dynamics.

Field distribution in electrostatic lens gap.



Potential of axial-symmetric electrostatic lens is defined by Laplace’s equation:

10, oU_ U (3.1)
_ =0
r or (r or )+ 07>
2 4 46 (3.2)
P p— g (4) (6) .
Solution: U(z,r)=U(2) U'(2)+ U (2)— 304 —U"(2)+

Field distribution inside each gap is given by near-axis approximation:

n ~-(2n)
E.(r2)=E.()- 7> E® @+ E® ()4 ...+ (DB (3.3)
4 64 @) 2 '

n 2n-1
LD EZ"Y (!

n)(n-1)! 2 (3.4)

E(r2)=-LE @+ E® (2)....
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Equation of particle motion dx . . _1 oF, L JOE, +
dz’ mv! 2 0z 16 97

Let us neglect the change of particle position in x - direction while crossing the gap. Change of
slope of particle trajectory at the entrance of the first gap is

- d/2 - d/2

3 2
A(@)inzLiX(-L d4EZdZ+L2 dgEZLdZ):_igEZ;x (I_de Ez)
dz Vz%zm 2 dz 16‘_00 dz3 m 2Vi2n 8E; dz?

where v;, 1s an effective particle velocity at the entrances of the gap, and the values of the field are
taken at the center of the gap. Analogously, the change of the slope of the particle trajectory at the
exit of the first gap is

2
Ay, =4 B (o d7Ez
m 2V3”, 8 E; dz?

where v, 1s an effective particle velocity at the exit of the first gap. Total change of slope of the
particle at the first gap is

2
A(@)z g E; x ( 1 1 )(I_delz)
&z mc? 2 Bozut Bzzn 8E: dz?
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To calculate term in brackets, let us approximate the field in the gap by function k. = OZ )
1+()
L

d+a

where L is a half of an effective gap width L =

<\2
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2 2 2
The term in bracket taken at the center of the gap: -~ d’E, 14—
SE, dz’ 41’

Finally, the change of slope of particle trajectory at the gap is

dx g E 11 r
A = =X — 1+
(dz) me’ 2 ( B, B X 417 )

If the field in the gap accelerates particles, £_> 0, then Bow>B;, , and change of slope of
dx

particle trajectory is negative  A(
dz

)< 0

If the field in the gap decelerates particles, £, <0, then g <p. , and change of slope of

d.
particle trajectory is also negative A(d—x) <0
Z

The gap with electrostatic field focuses particles. Change of slope of particle
trajectory can be written via focal length f and aberration coefficient C,:

dx X C r
A=) = =21+ =2 (=)
(dz) f[ f(f)]
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3.2 Beam emittance growth due to spherical aberrations

Let us estimate emittance growth of the beam passing through the lens. We assume that
position of particles is not changed while crossing the lens, and only slope of particle trajectory
is changed. Transformation from initial particle variables before lens (x,, x,’) to that after
crossing the lens (x, x’) is given by:

X=X, (3.9)
"y Cs .2\Xo
X =x, -(1+=%r5)2e . 3.10
e (3.10)

Suppose, initial phase space volume is bounded by the ellipse

) 2
X3y Yo p2_s (3.11)
R > '

To find the deformation of the boundary of the beam phase space after passing through the lens,
let us substitute inverse transformation

xozx: (3.12)

. Cs 2\x

Xo=x +(1+=5r2)L (3.13)
G
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The boundary of the new phase space volume, occupied by the beam after passing
through the lens at phase plane (x, x') is given by:

2
%Hﬁ(“h@) 5. (3.14)
R P

Let us introduce new variables (J, y) instead of (x, x') according to transformation:

%\Eﬂ/ﬁcos v, (3.15)

(x +?)%=@sinw. (3.16)

In new variables, the shape of beam emittance is:

4 2 4 2 3
2J+2CRTES) 2J) sinl//cos3l//+(C“R )(2‘? cos®p=>

A s . (3.17)



Let us rewrite Eq. (3.17) as T +T?*2vusinycos’ w+T v cos’ v =1, (3.18)

4
where 72-2J, p=CsR" (3.19)
3 51

Without nonlinear perturbation, v= 0, equation (3.18) describes ellipse (circle) in phase space. If
v#0, equation (3.18) describes S - shape figure of beam emittance.
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In general case, arbitrary transformation
X=Xo , X‘ :x(')+f(x0’y0) ’ (320)

conserves phase space area due to Jacobian of transformation (3.20) always equals unity:

Ox  Ox

ox ox

T 3.21
axo axo ( )

While phase space areas occupied by the beam before and after lens are the same, the effective
area, occupied by the beam, is increased. The value of beam emittance can be estimated as a
total area of elements dx dx' occupied by the beam. Actual areas of the beam in both cases are
the same, but the number of elements covered by the beam at phase pane is different.



Let us denote the increase of effective beam emittance as a square of product of minimum and
maximum values of T:

M: V Tmax Tmin . (322)
e}

Values T,,.,, T, are determined numerically from Eq. (3.18). Dependence of emittance growth
versus parameter v is presented at figure below. Dependence can be approximated by the

function:
deff =\ 1+ K02, (3.23)
E)

where parameter K = 0.4. Substitution of Eq. (3.19) into Eq. (3.23) gives for effective beam
emittance growth:

15 . . : . , T 2 C,R* ’
i _ — deff = 3 +K(“T) (3.24)

141

Beam emittance growth after beam passing through axial-symmetric lens as a function of
parameter p : (sold line) Eq. (3.22), (dotted line) approximation by Eq.(3.23).

3. 12



3.3 Beam emittance growth in drift space

Consider now emittance growth of space-charge dominated Gaussian beam in drift space.
Space charge density and space charge field of the initial beam are:

2
pro)=—2L  exp(-272), (3.25)
nR2 Bc R?
E,,=+L[1-exp(_2i)] (3.26)
2w e, Be To R2

Nonlinear function in space charge field is expanded as

}"2 }”2
f(ro)=1-exp(:2 2 ) =2 1o
R() R()

2
- 2R4 + ... (3.27)

At the initial stage of beam emittance growth we can assume, that particle radius is
unchanged, while the slope of the trajectory is changed. It gives us the nonlinear
transformation:

r=ro, (3.28)
) ) 2 2
r =r0+2ZP r()‘ZZP r(?_ (329)
R; R;

where P? is the generalized perveance.
3. 13



Transformation, Eqgs. (3.28), (3.29), is similar to that of lens aberration, Egs. (3.12), (3.13) with
formal substitution:

Cs _2zP?
a g (3.30)
Substitution of Eq. (3.30) into Eq. (3.23), gives for initial beam emittance growth in free space:
3eﬁ=\/32+K[1Z]2 (3 31)
L@y |

As follows from Eq. (3.31), initial emittance growth does not depend on initial beam radius R,.
Coefficient K depends on nonuniformity of the beam. For KV beam coefficient K = 0, while for
Gaussian beam it reaches the value of K = 0.6.



3.4 Beam uniforming in drift space

Space charge forces of Gaussian beam are nonlinear function of radius which result in nonlinear
redistribution of space charge density. At the beam drift, there is a certain distance where

different layers of the beam do not cross each other: the radial motion of the particles is
nonlinear, but the beam flow is still laminar. The assumption of laminar flow holds as long as p,(x)

remains single-valued function. For laminar flow, the number of particles contained in an arbitrary
cylinder with initial radius r, remains constant. Use of Gauss theorem yields the result:

1
Er=E r :—jp(r V' dr' = const (3.32)

r, o
80 0

Here, r is the radius of our hypothetical cylinder, which expands as the beam drift, thus r = r(z),
r(z=0)=r,. Use of Eq. (3.32) yields the radial space charge force at any location:

E =1 1) (3.33)

' 2nefe T ’ '

fro)=[1- exp(-272 )] (3.34)
R()



Taking into account expression for space charge field, Eq. (3.33), the equation of motion of an
arbitrary particle in drift region dp,/ dt = ¢E. /7 under the self space charge forces has the form:

d22 I.ﬁ3 /3 ro. (3.35)
=y [ 41 f(r,
Let us introduce the new variables: R=,f7, er% %3) , (3.36)
By
-
Then the Eq. (3.35) becomes: d°R = 1. (3.37)
dz? 2R

Eq. (3.37) is an equation for a single particle within the beam. It coinsides with envelope equation
for the beam with negligible emittance. The first integral of the equation (3.37) is:

(g)2 : (g)?, —InR. (3.38)

The approximate solution of this equation is ﬁ(bzl +0.25Z%-0.017Z>. It gives for evolution of
particle radius in drift space:

2 3
r=ro 1+ L CeY 0000172 ey FR ) (3.39)
n=—=4l 2’ (3.40)

LBy R’
3. 16



Let us take into account that the number of particles dN inside a thin ring (r, r + dr) is constant
during the drift of the beam at certain distance, hence the particle density p(r)=dN/(2rrdr) at any z

is connected with the initial density p(r,) by the equation:
p(r)=p (o) Fedro . (3.41)
rdr

Calculation of derivatives (3.41) gives the redistribution of the Gaussian beam under self space
charge forces :

Po exp (-2£3)

Ao+ a F + ayF? + a3 F> + a,F* + asF> + agF®’

pr)= (3.42)
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In Eq. (3.42) the following notations are used:

g,="o (3.43)
. \/ 1 ep(2). .0

&
ao =1+ 1 exp(-2E2), (3.45)
a,=-0.102 02 exp (2£), (3.46)
a =i n? exp(:2£)) (3.47)
a3 =0.017 n*"2 -0.0425 1'% exp (2E2) (3.48)
a, =1.734-10° nlexp (-253)-%172 : (3.49)
as=0.01275n""% | (3.50)
ag=-578-10"n* . (3.51)

According to Eq. (3.42), the beam with initial Gaussian distribution becomes more uniform when
the parameter n is close to 4.



3.5 Beam emittance growth in a focusing channel
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Fig. 3.7. Injection of 135 keV, 100 mA, 0.07 © cm mrad proton
beam with Gaussian distribution in a focusing channel with linear
field. It results in ~ (a) beam uniforming

(b) beam emittance growth
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Conservation of energy for electromagnetic field (Umov-Poynting’s theorem)

1}
| ,LLOHZ 80E2 =7,
$IEH]dS=—" [ ( + )dV — [ JEAV
? dty 2 2 iV (3.52) .
Expression on the left side is an integral of Poynting's vector
[I=[E,H] (3.53)

over surface S surrounding volume V and is equal to the power of electromagnetic irradiation, or
energy of electromagnetic field coming through the surface S per second. The first integral in right
side of Eq. (3.52) is a change of energy of electromagnetic field per second:

dw d H’ E’
e [y (3.54)
ar dt) 2 2

where electromagnetic energy in volume V'is

. 1 2 2
W= [ wH+eEHav (3.55)
Vv



Second term in right side of Eq. (3.52) can be expressed as a sum over all charges in the beam

[JEav =[ piEav =Y qvE (3.56)
14 14

Change of kinetic energy W.. = mc’(y — 1) of particle in time is
kin y

dw,. d
i _ e &Y (3.57)
dt dt
where derivative of reduced particle energy y = \/1 +(p/mc)’ overtimeis
dy 1 _dp 1 _dp 1 -
= TP =——V—=—F¢qVE (3.58)
dt y(mc)” dt mc” dt mc
Therefore,
= dW,
qvE = — (3.59)
dt
and second term, Eq. (3.52), is the change of kinetic energy of the beam in time:
- dw,
D GE =) —= (3.60)

dt



Consider non-relativistic case (no magnetic field):

d (€

N
2 ) —
> E“dV+ E ka)_O , (361)

i=1

where E is the total electrostatic field in the structure, and W,,, is the kinetic energy of particles:

2 2 2 2 2
+pl+ 2y p?

W, =me 1+ BT TPy (P TP (3.62)
n (mc)* 2my

where summation is performed over all particles of the beam. Assume that energy is the same for
all particles, and is not changed during beam transport. Below consider only transverse particle
motion and kinetic energy, associated with this motion. According to definition of rms beam
values, kinetic energy of particles is:

N
S Wiin=-N_[<p>+<p}>] (3.63)
i=1 2my

where rms value of transverse momentum is <p#> =(M)2 : (3.64)
2R

. . . 2 — 2
In a round beam rms values in both transverse directions are the same, <Pi> =<Py> therefore

< mc? (€ \?
z Wkin = NT (ﬁ) . (365)
=1
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We consider continuous beam, therefore Eq. (3.61) can be rewritten as

o OO

E?dS+ NmCc2 (i)2 = const
v G , (3.66)

Ly &
2

J O

where L, is an arbitrary length along the beam, containing N particles. Using beam current
I=gfcN/Ly Eq. (3.66) becomes:

4q}/2ﬁc (& j E*dS)+ (E)2 = const (3.67)
mc 2 R

Applying the last equation to the initial and final beam, one has,

E} ds-€
2

J O

o OO

2

E? dS)
f : 3.68
e RF  mcet 2 ( )

J o



2 2
& _Rf (14 pWi-Wr)

Eq. (3.68) can be rewritten as e R W, (3.69)
where initial, W, and final, W,, energy stored in electrostatic field are
W= | E’ds wy=%| E}ds
2 0 l ! 2 0 ! ’ (370)
L . I mc’ 2
and normalization constant is W =2re (— ——) (3.71)
1, qPy

If the beam is initially rms-matched, then the rms beam radius is changing insignificantly, so we
can put R; = R,. Additionally, taking into account expression

b=-2—1

tw‘;tw

one can write:

2
g=v1+(m_l)(4ﬁwi-w)_

3.72
u? W, (3.72)



In emittance-dominated regime u = u, and Eq. (3.72) gives us conservation of beam
emittance. Consider space charge dominated regime. Initial total field E; is given by:

2
E;=mc” 21 { r+R[1 exp (- 2r2 )}
qRYy Byl. R? (3.73)

Field

x/R

External focusing field E,,;, space charge field of Gaussian beam E,, and
3. total field E,,, + E, at initial moment of time. 25



Final beam distribution is close to uniform with the same value of beam radius R. It is a general property of
space-charge dominated regime, that self-field of the beam almost compensates for external field within the
beam. We can put E;= 0 within the beam and E; = E,,, + E, outside the beam

0, r<R

E,={ mc 2I r R : (3.74)

.....

Field

ext b

73 1
-3 -2 -1 0 1 2 3

x/R
External focusing field E,,;, space charge field E,, and total field E,,; + E, after
3. beam uniforming. 26




Substitution of E;and E; into Eq.(3.70) gives for

" gmax i gmax
WiWi | 7 peelae28)T&ae- | (£+ly &ag~0077
Wo ], g I £ (3.75)

where £=r / R. In Eq. (3.75) the upper limit of integration is arbitrary and usually is
determined by the aperture of the channel, & ,.,=a/R.

Free energy parameter for different beam distributions

4D 2D W,—W,
Distribution| Projection W
KV P, 0
Water Bag| p (1-1—) 0.01126
RZ
. 2
Parabolic p (1- % ) 0.02366
2
1 r
Gaussian D exp(_? 0.077
27
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3.6 Halo formation
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Envelope oscillations of the beam with space charge parameter b=3, amplitude A= 0.2 and
single particle trajectories with initial conditions (a) x,/R,=0.8, (b) x,/R, =1.071, (c) x,/R, =1.728,
(d) x,/R, =1.082.
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Stroboscopic particle motion
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Stroboscopic particle trajectories at phase plane (u, du / dt)taken after
each two envelope oscillation periods: (a) x,/R,=0.8, (b) x,/R,=1.071, (c)
x,/R,=1.728, (d) x,/R,=1.082.



Dimensionless envelope equation for round beam

2 2 2
Envelope equation for round beam d°R_> 4 (,uo) R-—2I -
dz? R3 L I ﬂ3y3R
: : 1 L,
Let us multiply everything by —(—)
R
e Mo Z
Dimensionless time 7= H, 7
R R
d'(—)  d'()
First term R, _ R
T2 dt’
diu =
(U, L)
5 (L)z_ 1 (3L)_ 1 (;u)z_ 1 1
Second term R3R, Mo (R)3 R2u, (R3 Uo (R)3 (1+b)
R R, R.
dx
i U 1
‘ciZR = )= 1+b
ey U,
—p2H
d°x U, Kh
Recall: —+(=)"x=0 =
i "L N
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Third term: (‘uo )2 R ( L )2 —

21 (L)2= 21 1 (LRe)2= 2IR; 1 (.u)2= 1 b

Fourth term: L(B’RR: o 1By By poRZ 1(Byy’s” (B Koo (B (140)
Finally:
e
R’ R 1 b
=+ =0
dart R

a R, R
(1+b)(Re) (Hb)(Re)



Dimensionless single-particle equation of motion

. . . . . . 24 p2 242
;—(I)irLTsllitnonfr:\a(r)Lglartlcle motion in uniform H:Px Py N merz (x=+y~) rq U,
g 2 my 2 72
x4 029 E, =0
. . | t r - b —_—
Equation of particle motion . my>
-, <R
: I R
Space charge field E, = { 1
27r80[))c - r>R
X
- O — gt
Frequency of transverse oscillations , = Pc
. . . 1 L 2
Let us multiply equation of motion by —( )
R, u,fc
3.
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Particle — core model

Beam envelope (core) equation:

d*r 1 b
—2+r— 3 =0
dt I+b)r” ({A+Db)r

Single particle equation of motion:

b u

b U <
2 oy, ST
dr> b sy
(+b)u
| R
Dimensionless envelope TR
Dimensionless coordinate y=

R

e
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Space charge parameter

2 I R
Pri. €

[  beam current
I_=4me mc’/q characteristic beam current
£ normalized beam emittance

B particles velocity,
Y  particle energy
R, radius of the equilibrium envelope

Small intensity beam b = 0
High intensity beam b >> 1
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Envelope oscillations

d’r N 1 b 0
: ar . ._ _ _
Envelope equation 7 A+00° (4D
1 1 0 2+b
° == —=1- +2 =0
Expansions r=1+9 1-9 " 1-39 1 (1+ , )

Equation for small deviation from equilibrium
r=1+ Acos(2€27)

1.4

Envelope oscillation frequency L :j\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ 3 A
S NeET} WIS AR AR

0.4}

For small intensity beam b =0 r=1+Acos27

0.2

For high intensity beam b >>1 r=1+Acos\21 b



Approximation of space charge field (R.Gluckstern, 1994)

1.0

Field

0.0

-1.0

) - 0 1 2
(1) Field of uniformly charged beam (2) Field approximation:
u
— <
_ b {rz,u|_r P b (u u3)
(i+b) 1 u|>r C(1+b) P 4
u,
3
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Anharmonic oscillator with parametric excitation for single particle
motion

With field approximation, equation of particle motion is

d*u u
=0
dTZ (1+b)[(1+ACOSZQT)2 4 !
Using expansion ! > =~1-2Ac0s2Q7
(1+ Acos2Q7)

Equation of particle motion Z U, u( )(1 +2bAcos2€27T) +( )” ’

.2 2 4
. . . u P u
Equation corresponds to Hamiltonian H=—+0 7(1 —hcos2Q7)+ o "
- : - o = —— h=-2bA a=—>"
with the following notations 1+b 4(1+ b)



Canonical transformation of Hamiltonian

Change the variables (i, #) to new variables (O, P) usmg a

generating function P p?
E,(u,P,7)= —( +a5 )thT
cosQT 20
. . . . Q= M u 4P tgQ 1
Relationships between variables are given by: { P cosQt ©@
w=d2__ P gy 1982 1

du cos Q71

u=Q cosf2 t+L sinQ 1
or { 0)
u=-0Q sin2 7t + Pcos 2 1

i ||||||||i||||||| '

] .m|+||||||||I|||l||||||||n. ”” |
H il HWIm.WWIIHM

1 UHNI!I v ”* 'i ”””m"m"HW' IHHWII Wli N

E

O a
[=]
@
o
o




Averaged Hamiltonian

New Hamiltonian K=H+ aj 2
T
P? 2 *h P P . P’Q Qo
K=—+a'72Q——&-7 (QCOSQT+—SinQT)ZCOSZQT+g(QCOSQT+—SanT)4— — 0’
2 2 2 0] 4 0] 20 2

After averaging all time-dependent terms over period of 27/Q2

_Qthzg

K = —) —OC(Q 2)2




Second canonical transformation

Change variables (Q,P) to action-angle variables (JJ, ) using generating function

\9)

_ @ O
FQ.y)=
2ty
~ |2J .
Transformation is given by { Q= o sIny

P =+2J® cosy

New Hamiltonian K =vJ +xJ*+2xJcos2y

V2 -\2+b
J2(1+b) 32

with the following notations V=D —-Q=

K=—>b
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Nonlinear parametric resonance
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Lines of equal values of Hamiltonian K =vJ +KkJ* +2yJ cos2y =-4.079-107

corresponding to the beam with space charge parameter b = 1, core amplitude A=-0.1

and parameters v =-0.159, k =0.09445,y =0.01777



Fixed points at phase plane

Fixed points:
Z—Jz—g—K: 4yJsin2y =0 —» sin2y=0
Jma T l//
dy oK
dy = =V+2kJ+2ycos2y =0
dt dJ £ 4
7= V+2y
Unstable points cos2y=1 v=0.7 ' 2K
Stabl - T 3x J -V+2y
able points = =—,— ST
p cos2y=-1 4 2’9 i
2
Value of Hamiltonian at unstable point K, = K(J,) K = —(vzﬂ
K

43



Maximum value of variable J

Particle with the value of Hamiltonian K, = K(J ) can reach the point J,,,, having y=7r/2

Equation for J,,,, KJ iax +J (V=2x)—K =0
;o (-0 +2)x)+4/8|vy]
max i

The value of J 1s connected with variables (1, du/d7) as

-2

1
J = —(u2(75+u—)
2 o



Maximum deviation of particle from the axis

Maximum value of particle deviation from the axisi1s «_, =,—= or

[ b blA] b
R 1+2—1+2+\/2b\A\( 1+2—1)

R 3 b

e
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Comparison of analytical and numerical results: low intensity beam
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(Solid) analytical and (dotted) numerical results of averaged phase

space trajectories, b=0.1, A=-0.1.
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Comparison of analytical and numerical results: moderate intensity beam
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(Solid) analytical and (dotted) numerical results of
averaged phase space trajectories, b=1, A=0.1



Comparison of analytical and numerical results: high intensity beam
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(Solid) analytical and (dotted) numerical results of
averaged phase space trajectories, b=10, A=0.1
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Comparison of analytical and numerical results (cont.)

3.5

{b=0.1
/ b=3
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|
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Comparison of analytical (solid lines) and numerical

simulation of maximum particle deviation from the
axis: (black) b =10, (triangle) b = 3, (square) b = 0.1.




Comparison of analytical and numerical results (cont.)

4.0

T b=0.1
_——1 b=1
- | // b=3
// =
3.0 — T 2 +2In(1+A)
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Maximum values of particle deviation from the axis as a
function of amplitude of core oscillations. (Red) model of
Tom Wangler (RF Linear Accelerators, Wiley, 1998)

mx A+ Bln(u)

s
2

where 4 = B =4, uy=1+A.
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3.7. Non-uniform beam equilibrium

Non-uniform beam in general case is intrinsically mismatched with linear focusing channel.
Meanwhile, it is possible to find matched solution for non-uniform beam without emittance growth, if
we refuse from linearity of focusing field.

Assume that the beam is propagating in continuously focusing channel, and is matched with the
channel. Hence, the Hamiltonian is a constant of motion:

px+Dp§
2my

H= + q U(x,y) = const . (4.3)

The total potential of the structure is a combination of the external focusing potential, U,_, and the

space charge potential U, of the beam, U=U,y+ Upy 2 The time-independent distribution

function of a matched beam obeys Vlasov's equation, where the partial derivative of the distribution
function over time 1s equal to zero due to assumption of a matched beam:

Lyt Y py-ql 0V, o OU

)=0 (4.4)
my dx ay dpx 0x dpy dy



Eq. (4.4) can be solved to find the total potential of the structure, U, as a function of beam
distribution function f (x, p,, y, p,). The distribution function of the beam is supposed to be
given. Therefore, the self - potential of the beam U, is also a known function derived from

Poisson's equation:
19 (,0Uny_ pr) 4.5)
For ar &

Combining solutions of Vlasov's equation for total potential of the structure, U, and space
charge potential of the beam, obtained from Poisson's equation, U,, the external potential of the

focusing structure can be found
Upy=U-—2 (4.6)

The solution of this problem is unique for every specific particle distribution.



Consider a z - uniform beam with Gaussian distribution function in four - dimensional phase space:

x24y?2

5 px +py )
R’ ps

J=Jo exp(-2 (4.7)

This distribution has an elliptical phase space projection at every phase plane with normalized root-
mean-square beam emittance:

g=4 A <x2> <p?>-<xp>t=R Po. (4.8)
m c mc

Substituting the distribution function, Eq. (4.7), into Vlasov's equation yields an expression for the
total unknown potential of the structure:

2 4
me= 1 (xp.+ ypy) =R (p, aU+py ol (4.9)
g 7 e2 dx dy

Vlasov's equation can be se parated into two independent parts for x- and y- coordinates
respectively:

2
U _mec?¢ X, aU:mczgzy. (4.10)

ox qu“ dy qu“




Combining solutions of Eq. (4.10), the total potential of the structure is a quadratic function of
coordinates which creates linear focusing field £,

2 2 2
Ulry) =mc2 Le (X370 (4.11)
g YV p* 2
Eg=-mc2 1 &> (4.12)
q }’R4

The appearance of quadratic terms in the total potential of the structure is quite clear because phase
space projections of the beam have elliptical shape which is conserved in linear field. The space
charge field of the beam, E,, is calculated from Poisson's equation using a known space charge

density function of the beam p,

po=po exp(-277), (4.13)
R2
Ep=-0Ub o T 1[{_exp-272), (4.14)
or 271'80ﬁc r R2

2
where p =2I/(rcSR ) is the space charge density at the axis.



Subtraction of the space charge field from the total field of the structure gives the expression for the
external focusing field of the structure which is required for conservation of the beam:

Eeq=-mc (€7 49 1 R (1-exp(- 212))],  (4.15)
qRY RS I.By R2

The relevant potential of the focusing field is given by the expression:

~ k+1 Ak 2%k
Upe (=t (€2 420 2y 20 ot 270 CD20 r g 46
YV 2R* I.ByR? IcBy 2R* 9R® 2k k! R%*

External potential of the structure, E q. (4.16), consists of two parts: quadratic (which produces
linear focusing) and the part with higher order terms which describe nonlinear focusing. The linear
part depends on the values of beam emittance and on the beam current, while the nonlinear part
depends on beam current only. This means that the external field has t o compensate the nonlinearity
of self-field of the beam and produce required linear focusing of th e beam to keep the elliptical
beam phase space distribution.



Required potential distributio n can be crea ted by introducing inside the transport channel an
opposite charged cloud of particles (plasma lens) with the space charge density:

2 I.e?
pext =p0 exp(_z r )+ C . (4.17)
R?>  2mc R*
2 1 1 1 1 1 1 1 1 1 1 1 1
| — - 1.2
Uvd \\\\_ 10 | \ _
0 / Space Charge Field AN i
\ i 0.8 \
NN = N :
I \ \Qal Field - = 0o T \ | ]
) N ~ \ Fodusing Beam
N N 0.4
B T TT— \ i \
- Focusing|Field - - Transport Beam -
-4 1 ] ] 1 1 L 0.0 ] ] \N__Lp 1 ]
00 05 10 15 20 25 3.0 0.0 05 1.0 L5 20 25 3.0
/R /R
Total field of the structure E,,,, required external focusing field E.,,, Charged particle density of the transported beam
and space-charge field of the Gaussian beam E),. with Gaussian distribution, and of the external

focusing beam
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