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3.1 Spherical aberrations 

Field distribution in electrostatic lens gap. 
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Potential of axial-symmetric electrostatic lens is defined by Laplace’s equation: 
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Field distribution inside each gap is given by near-axis approximation: 
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Equation of particle motion d 2x
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Let us neglect the change of particle position in x - direction while crossing the gap. Change of 
slope of particle trajectory at the entrance of the first gap is 
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where vin is an effective particle velocity at the entrances of the gap, and the values of the field are 
taken at the center of the gap. Analogously, the change of the slope of  the particle trajectory at the 
exit of the first gap is 
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where vout is an effective particle velocity at the exit of the first gap. Total change of slope of th e 
particle at the first gap is  
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Ez =
Eo

1+ ( z
L
)2

To calculate term in brackets, let us approximate the field in the gap by function 

where L is a half of an effective gap width L ≈ d + a
2

The second derivative d 2Ez
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Approximation of the static field in the gap. 3. 5 



1− r2

8Ez

d 2Ez

dz2
= 1+ r2

4L2
The term in bracket taken at the center of the gap: 

Finally, the change of slope of particle trajectory at the gap is  
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If the field in the gap accelerates particles, Ez > 0, then                  , and change of slope of 

 particle trajectory is negative  

If the field in the gap decelerates particles, Ez < 0, then                                , and change of slope of  

particle trajectory is also negative 

Δ(dx
dz
) < 0

Δ(dx
dz
) < 0

The gap with electrostatic field  focuses particles. Change of slope of particle 
trajectory can be written via focal length f and aberration coefficient Cs: 
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) = − x
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Focusing of a parallel beam by (a) an ideal lens (a) and  
(b) by lens with spherical aberrations (from Reiser, 1994, p. 458). 
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To find the deformation of the boundary of the beam phase space after passing through the lens, 
let us substitute inverse transformation 

 
 xo = x,                                                                                 (3.1 2 )  

 
xo'  = x'  + (1 + Cs

f 3
 r 2 ) x

f  
,                                                         (3.13) 

3.2 Beam emittance growth due to spherical aberrations 
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Distortion of beam emittance due to spherical aberrations, Eq. (3.18): (left)        = 0,  
(right)     = 1.6. 

υ
υ
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Beam emittance growth after beam passing through axial-symmetric lens as a function of 
parameter             : (sold line) Eq. (3.22), (dotted line) approximation by Eq.(3.23). υ
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3.3  Beam emittance growth in drift space 
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3.4 Beam uniforming in drift space 
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Fig. 3.6. Redistribution of Gaussian beam in drift space. 3. 17 
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3.5 Beam emittance growth in a focusing channel 

Fig. 3.7. Injection of 135 keV, 100 mA, 0.07  cm mr ad proton 
beam with Gaussian distribution in a focusing channel with linear 
field. It results in      (a) beam uniforming 

(b) beam emittance growth 
(c) halo formation. 

 

z = 0 

z = 30 cm 

z = 104 cm 
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Conservation of energy for electromagnetic field (Umov-Poynting’s theorem) 

(3.52) 
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b= µo2
µ2

−1
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External focusing field Eext, space charge field of Gaussian beam Eb, and 
total field Eext + Eb at initial moment of time. 3. 25 



External focusing field Eext, space charge field Eb, and total field Eext + Eb after 
beam uniforming. 3. 26 



     4D                  2D   
Distribution    Projection 

    KV 0 

Water Bag 0.01126 

 Parabolic 0.02366 

Gaussian 0.077 

ρo

ρo(1−
r2

R2
)

ρo(1−
r2

R2
)2

ρo exp(−
r2

R2
)

Wi −Wf

Wo

        Free energy parameter for different beam distributions 
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Beam emittance growth in a uniform focusing channel for different 
particle distributions. 
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Envelope oscillations of the beam with space charge parameter b=3, amplitude    = 0.2 and 
single particle trajectories with initial conditions (a) xo/Ro=0.8, (b) xo/Ro =1.071, (c) xo/Ro =1.728, 
(d) xo/Ro =1.082. 

3.6 Halo formation 

a b

c d 

xo
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= 0.8 xo
Ro

= 1.071

xo
Ro

= 1.082xo
Ro

= 1.728

Δ
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Stroboscopic particle trajectories at phase plane                   taken after 
each two envelope oscillation periods: (a) xo/Ro=0.8, (b) xo/Ro =1.071, (c) 
xo/Ro=1.728, (d) xo/Ro =1.082. 

Stroboscopic particle motion 

(u, du / dτ )
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Dimensionless envelope equation for round beam 

Let us multiply everything by  1
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H = 
px2 + py2

2 m γ
 + mγ Ω r

2 (x
2+y 2)
2

 + q Ub

γ 2  

Hamiltonian of particle motion in uniform 
focusing channel  

Ωr = βc µo

L

d2x
dt 2

 + Ω r
2x - q

mγ 3
 Eb = 0

 

Dimensionless single-particle equation of motion 

Equation of particle motion  

Eb =
I

2πεoβc
{

x
R2 ,  r ≤ R

1
x
,    r > R

Space charge field 

Frequency of transverse oscillations 

1
Re
( L
µoβc

)2Let us multiply equation of motion by 
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d 2r
dτ 2

+ r − 1
(1+ b)r3

−
b

(1+ b)r
= 0

 

Particle – core model 

Beam envelope (core) equation: 

Single particle equation of motion: 

r = R
Re

Dimensionless envelope 

Dimensionless coordinate u = x
Re

d2u
dτ 2

+u={
b

(1+b)
u
r2
,  u ≤ r

b
(1+b)u ,    u > r
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b =
2
βγ

I
Ic

Re
2

ε 2

Space charge parameter 

Small intensity beam b ≈ 0  

High intensity beam b >> 1 
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d 2r
dτ 2

+ r − 1
(1+ b)r3

−
b

(1+ b)r
= 0

 

r = 1+ϑ  

1
r
≈ 1−ϑ

 

1
r 3

≈1− 3ϑ
 

d2ϑ
dτ 2

+ 2(2 + b
1+ b

)ϑ = 0
 

Envelope equation  

For small intensity beam b ≈ 0 

r = 1+ Δ cos 2τ

r = 1+ Δ cos2τ

For high intensity beam b >>1 

Expansions  

Equation for small deviation from equilibrium 

Envelope oscillations 

r = 1+ Δ cos(2Ωτ )

2Ω = 2(2 + b
1+ b

)

Envelope oscillation frequency  
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F =
b
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{

u
r2
,   u ≤ r

1
u
,    u > r

F =
b
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r2

+
u3

4
)

Approximation of space charge field (R.Gluckstern, 1994) 

(1) Field of uniformly charged beam (2)  Field approximation: 
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With field approximation, equation of particle motion is 
 

Using expansion 

Equation of particle motion  

Equation corresponds to Hamiltonian 

with the following notations α = b
4 (1 + b) 

Anharmonic oscillator with parametric excitation for single particle 
motion  

ϖ 2 =
1
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{
u = Q cos Ω  τ + P

ϖ
 sin Ω  τ   

  u = - ϖ  Q sin Ω  τ  + P cos  Ω  τ 
or  

Canonical transformation of Hamiltonian 

F2 (u,P,τ ) =
uP

cosΩτ
− ( P

2

2ϖ
+ϖ u2

2
)tgΩτ

Change the variables (u, u) to new variables (Q, P) using a 
generating function 

{ 
Q = ∂F2

∂P
 =  u

cos  Ω  τ
  +  P

ϖ
 tg Ω  τ

u = ∂F2
∂u

 = P
cos  Ω  τ

 -  ϖ  u tg Ω  τ
 Relationships between variables are given by: 
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New Hamiltonian  K = H + ∂F2
∂τ  

Averaged Hamiltonian 

After averaging all time-dependent terms over period of 2π/Ω 
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Change variables (Q,P)  to action-angle variables (J, ) using generating function 

F1(Q,ψ ) =
ϖ Q2

2tgψ

Transformation is given by 

New Hamiltonian 

with the following notations 

Second canonical transformation 

K = υJ +κ J 2 + 2χJ cos2ψ

{
Q =

2J
ϖ
sinψ

P = 2Jϖ cosψ

υ =ϖ −Ω =
2 − 2 + b
2(1+ b)

χ = −
1
4

bΔ
1+ b

κ =
3
32
b
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Lines of equal values of Hamiltonian 

Nonlinear parametric resonance 

   corresponding to the beam with space charge parameter b = 1, core amplitude           Δ = −0.1

K = υJ +κ J 2 + 2χJ cos2ψ = - 4.079 ⋅10-2

υ = -0.159, κ = 0.09445,χ = 0.01777    and parameters 
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sin2ψ = 0 

Unstable points  cos2ψ = 1 ψ = 0, π 

Stable points  cos2ψ = - 1 Js =
−υ + 2χ
2κ

Ju = −
υ + 2χ
2κ

Value of Hamiltonian at unstable point Ku = K(Ju ) Ku = −
(υ + 2χ)2

4κ

Fixed points at phase plane 

ψ =
π
2
, 3π
2

Fixed points:	



dJ
dτ

= −
∂K
∂ψ

= 4χJ sin2ψ = 0

dψ
dτ

=
∂K
∂J

= υ + 2κ J + 2χ cos2ψ = 0
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Particle with the value of Hamiltonian Ku = K(Ju )can reach the point Jmax having =   

κ J
max
2 + Jmax (υ − 2χ) − Ku = 0Equation for Jmax 

The value of J is connected with variables (u, du/d ) as 

Maximum value of variable J 

 
J =

1
2
(u2ϖ +

u2

ϖ
)

Jmax =
(−υ + 2χ) + 8 υχ

2κ
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xmax
Re

=
32
3

1+ b
2
−1+ b Δ

2
+ 2b Δ ( 1+ b

2
−1)

b

Maximum value of particle deviation from the axis is                         or umax =
2Jmax
ϖ

Maximum deviation of particle from the axis 
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F =
b

(1+ b)
(− u
r2

+
u3

4
) F =

b
(1+ b)

{

u
r2
,   u ≤ r

1
u
,    u > r

(Solid) analytical and (dotted) numerical results of averaged phase 
space trajectories, b=0.1,    = - 0.1. 

       Comparison of analytical and numerical results: low intensity beam 

Δ

Numerical integration in approximate 
space charge field 

Numerical integration in space charge 
field of uniform core 
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F =
b

(1+ b)
(− u
r2

+
u3

4
) F =

b
(1+ b)

{

u
r2
,   u ≤ r

1
u
,    u > r

(Solid) analytical and (dotted) numerical results of 
averaged phase space trajectories, b=1,  

Comparison of analytical and numerical results: moderate intensity beam 

Δ = 0.1

Numerical integration in approximate 
space charge field 

Numerical integration in space 
charge field of uniform core 
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(Solid) analytical and (dotted) numerical results of 
averaged phase space trajectories, b=10,  

Comparison of analytical and numerical results: high intensity beam 

Δ = 0.1

Numerical integration in space charge 
field of uniform core 

Numerical integration in approximate 
space charge field 
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b
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+
u3

4
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b
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u
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1
u
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Comparison of analytical (solid lines) and numerical 
simulation of maximum particle deviation from the 
axis: (black) b = 10, (triangle) b = 3, (square) b = 0.1.  

Comparison of analytical and numerical results (cont.) 
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Maximum values of particle deviation from the axis as a  
function of amplitude of core oscillations. (Red) model of 
Tom Wangler (RF Linear Accelerators, Wiley, 1998)  
 
 
 
where A = B = 4, =1+  

Comparison of analytical and numerical results (cont.) 

xmax
Ro
2

= A + B ln(µ)
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3.7. Non-uniform beam equilibrium 

Assume that the beam is propagating in continuously focusing channel, and is  matched with the 
channel. Hence, the Hamiltonian is a constant of motion: 
 

H = 
 px2 + py2

2mγ
 + q U (x,y) = const .                       (4.3) 

 
The total potential of  the structure is a combination of  the external focusing potential, Uext, and the 
space charge potential Ub of the beam,  U = Uext + Ubγ  -2. The time-independent distribution 
function of a matched beam obeys Vlasov's equation, where the partial derivative of the distributio n 
function over time is equal to zero due to assumption of a matched beam: 
 

1
mγ

 (∂f
∂x

 px + ∂f
∂y

 py) - q ( ∂f
∂px

 ∂U
∂x

 + ∂f
∂py

 ∂U
∂y
) = 0

 
.              (4.4) 

 
 

Non-uniform beam in general case is intrinsically mismatched with linear focusing channel. 
Meanwhile, it is possible to find matched solution for non-uniform beam without emittance growth, if 
we refuse from linearity of focusing field.  
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Consider a z - uniform beam with Gaussian distribution function in four - dimensional phase space:  
 

f = fo exp ( - 2  x
2+ y 2 

R2
 - 2 

  px2 + py2 

po2
 ).                             (4.7) 

 
This distribution has an elliptical phase space projection at every phase plane with normalized root-
mean-square beam emittance:  

ε = 4
m c

 <x2> <px2> - <xpx>2
 
= R  po

m c 
.                     (4.8) 

 
Substituting the distribution function, Eq. (4.7), into Vlasov's equation yields an expression for the  
total unknown potential of the structure: 
 

mc 2
q  1

γ
 (x px + y py)  =  R

4

ε 2
  ( px  ∂U

∂x
 + py  ∂U

∂y
 ).              (4.9) 

 
Vlasov's equation can be se parated into two independent parts for x- and y- coordinates 
respectively: 

∂U
∂x

 =  mc 2 ε 2

γ  q R4
  x  ,            ∂U

∂y
 =  mc 2 ε 2

γ  q R4
  y  .          (4 .10)  
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Combining solutions of Eq. (4.10), the total potential of the structure is a quadratic function of 
coordinates which creates linear focusing field Etot: 

U(x,y)  =  mc 2
q  1

γ
 ε
2

R4
  (  x

2 + y 2

2
 )
 
,                       (4.11) 

 

Etot = - mc 2
q  1

γ
 ε
2

R4
  r 

 
.                           (4.12) 

  
The appearance of quadratic terms in the total potential of the structure is quite clear because phase 
space projections of the beam have elliptical shape which is conserved in linear  field. The space 
charge field of the beam, Eb, is calculated  from Poisson's equation using a known space charge 
density function of the beam b: 

ρb = ρo exp ( - 2 r 2

R2
)
 
,                                    (4.13) 

 

Eb = - ∂Ub

∂r
  = I

 2π  εo β c   
 1r  [ 1 - exp( - 2 r2

R2
 )],            (4.14) 

 
where  = 2I/( c  R

2
) is the space charge density at the axis. 
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Subtraction of the space charge field from the total field of the structure gives the expression for the  
external focusing field of the structure which is required for conservation of the beam: 
 

Eext  = - mc 2
q R γ

  [  ε
2 r

R3
  + 2 I

Ic βγ
  Rr   ( 1 - exp ( - 2 r 2

R2
 ) )] ,     (4.15) 

 
The relevant potential of the focusing field is given by the expression: 
 

Uext  (r) = mc 2
qγ

 [( ε
2

2R4
 + 2I

Icβγ R2
 ) r 2 + 2I

 Icβγ
 (- r 4

2R4
 + 2
9

 r 6

R6
  +...+  (-1)

k+1 2k    r 2k

2k k ! R2k
 ) ].      (4.16) 

 
 

External potential of the structure, E q. (4.16), consists of two parts: quadratic (which produces 
linear focusing) and the part with higher order terms which describe nonlinear focusing. The linear 
part depends on the values of beam emittance and on the beam current, while the nonlinear part 
depends on beam current only. This means that the external field has t o compensate the nonlinearity 
of self-field of th e beam and produ ce required linear focusing of th e beam to kee p the elliptical 
beam phase space distribution. 
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Required potential distributio n can be crea ted by introducing inside the transport channel an 
opposite charged cloud of particles (plasma lens) with the space charge density: 
 

ρext   = ρo exp ( - 2 r 2

R2
) +   Ic ε 2

2πc R4
.                             (4.17) 

 

                   
Total field of the structure Etot, required external focusing field Eext,         Charged particle density of the transported beam 
and space-charge field of the Gaussian beam Eb.                                        with Gaussian distribution, and of the external 
                                             focusing beam 
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