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Abstract

The course is intended to give a broad overview of self-consistent beam
dynamics with strong space charge forces in beamlines and in Radio Frequency
accelerators. Special emphasis is on the physics of high brightness beams in
phase space. The topics include: Hamiltonian self-consistent dynamics of
particles, equations of motion, emittance and brightness of the beam, beam
transport in quadrupole focusing channel and in longitudinal magnetic field,
averaging method in particle dynamics, Kapchinsky-Viadimirsky beam envelope
equations, beam current limit in beamlines, nonlinear effects in beam transport,
beam emittance growth due to space charge forces, halo formation in particle
beams, beam equilibrium in focusing channels, space charge dominated beam in
RF linear accelerators. The course consist of 23 hours of lectures, focusing on
the theoretical understanding of the course content, as well as sessions on how

to solve practical problems.
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1.9. Emittance of the beam 1n particles sources
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Example: beam drift in free space
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From Maxwell equations for magneto-static field: gﬁfl dl =J jds
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Let us determine distance z where the beam radius is doubled: R=2 Z=2 =7, ]
I.(Byy

When 1 =1.(By)’ , such beam cannot exists because it is diverged at the distance of
z=r1, equal to beam radius



1.1. Self-consistent particle dynamics

Example: Two - body problem*

Every point mass attracts every single other point mass by a force pointing along the line intersecting both points.
The force is directly proportional to the product of the two masses and inversely proportional to the square of the

distance between the point masses:
mMq1M9

F=G—2
r<

where:
Fis the magnitude of the gravitational force between the two point masses,
Gis the gravitational constant,
m; is the mass of the first point mass,
m5 is the mass of the second point mass, and
ris the distance between the two point masses.

In classical mechanics, the two-body problem is to determine the motion of two point particles that interact only
with each other.



Let x, and x, be the positions of the two bodies, and m, and m, be their
masses. The goal is to determine the trajectories x;(f) and x.(f) for all times
t, given the initial positions x,(#=0) and x,(=0) and the initial velocities
v,(t=0) and vy(t=0).

When applied to the two masses, Newton's second law states that

F12(X1_~X2) = mX,
Fo(x1,Xp) = MXo

where F, is the force on mass 1 due to its interactions with mass 2, and
F., is the force on mass 2 due to its interactions with mass 1.

Adding and subtracting these two equations decouples them into two one-
body problems, which can be solved independently. Adding equations (1)
and (2) results in an equation describing the center of mass (barycenter)
motion. By contrast, subtracting equation (2) from equation (1) results in an
equation that describes how the vector r = x, — X, between the masses
changes with time. The solutions of these independent one-body problems
can be combined to obtain the solutions for the trajectories x;(f) and xx(1).

Jacobi coordinates for two-body problem; Jacobi
R my me
coordinates are = —x -} — X2
M M™%
r=x; — Towith M = my + mop!"

nd



1.2. Hamiltonian dynamics

Hamiltonian of charged particle with charge g and mass m

H= cﬂ/mzc2 +(Py- gA,) + (Py - qu)2 + (P, - qAZ)2 +qU

X, V, Z position in real space
P, P, P. components of canonical momentum
A, Ay, A components of the vector — potential
Ux,y,z) scalar potential of the electromagnetic field
oo dx _ OH dp __OH
uations of motion: — TS
1 dt oP dt 0x

Canonical momentum P = (Px, Py, P;) and mechanical momentum ; = (px, Py, Pz) are related:

p=P-qA

Element of phase space: dV =dxdy dz dPy dPy dP,

Phase space density (beam distribution function):

f(x,y,2, Px, Py, Py)= dN
dx dy dz dPy dPy dP;



Liouville’s theorem: if the motion of a system of mechanical particles obeys Hamilton’s
equations, then phase space density remains constant along phase space trajectories and
phase space volume occupied by the particles is invariant (Liouville's Equation):

d ot gy d gp dr

Being applied to ensemble of particles in electromagnetic field it is called the Viasov
equation .

pi a) pd b)

/ p(q‘p‘t)=po Qt:QO

p(qq.Pg.tg)=r,

q q

[llustration of conservation of phase space volume (A.Sorensen, 1987, CERN 87-10).



Self-consistent approach to N-particle dynamics

Solution to the equations of motion of the particles, together with the equations for the
electromagnetic field which they create.

Solution of self-consistent problem: the phase space density, as a constant of motion can
be expressed as a function of other constants of motion 7, 1, ....

f=fU1, I, ....)

This equation automatically obeys Liouville's equation

df = of dh | of db _
ar ol dt ol dt

because of vanishing derivatives, dI;/dt = 0.



Field created by the beam is described by Maxwell's equations:

v.E=L£
0
V-B=0
0B
I x BE=——
v ot
OE
V x B = pod + poco——
ot
space charge density p=q ’ ’ fdPydPydP,
beam current density Jj=q I ’ I T/ fdPx dPy dP;

&, = 8.85x 10" F/m is the electric permittivity
U, = 4w 10”7 H/m is the magnetic permeability of free space



Instead of electric field E and magnetic field B, it is common to use vector potential A
and scalar potential U :

q A
E = —a——gradU
ot

—

B = rotA

The field of the beam is described by the equations

2
AU, - L0 - P
c” ot €o
-~ 9°A ’
AAp - L5 =y,

c” ot
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Consider system of coordinates, which moves with the average beam velocity 5. We will
denote all values in this frame by prime symbol. Potentials [/ , X are connected with that in

—

laboratory system, U, A, by Lorentz transformation

A =y(A;+EU')
C
U=y (U + cA,)

Ay =A,, A,=A,



In the moving system of coordinates, particles are static, therefore, vector potential of the

beam equals to zero, Xb =0. According to Lorentz transformations, components of vector

potential of the beam are converted into laboratory system of coordinates as follow

A =0 Aw=0,  Au=pY

In a particle beam, the vector potential and the scalar potential are related via the

expression A, =;Z /c 2Uy, therefore, it is sufficient to only solve the equation for the
scalar potential. The unknown distribution function of the beam is then found by
substituting equation for distribution function into the field equation and solving it.
For example, for beam transport, equation for unknown space charge potential is

o OO

AUb=—i f, L, ...)dP

o

of =00

Equation for unknown potential of the beam together with Vlasov’s equation
for beam distribution function constitute self-consistent system of equations
describing beam evolution in the field created by the beam itself.



1.3. Applicability of Vlasov's equation to particle dynamics

Vlasov's equation describes behavior of non-interactive particles in given external field.
Charged particles within the beam interact between themselves:

(1) interaction of large number of particles resulted in smoothed collective charge
density and current density distribution

(1) individual particle - particle collisions, when particles approach to each other

at the distance, much smaller than the average distance between particles.

First type of interaction results in generation of smoothed electromagnetic field,
which, being added to the field of external sources, act at the beam as an external field.
The second type of interaction has a meaning of particle collisions resulting in
appearance of additional fluctuating electromagnetic fields.

Using Vlasov's eqauiton, we formally expand it to dynamics of interacting charged
particles, assuming that the total electromagnetic filed of the structure (U, A)

U=Ue+ Up

A=Aex+ Ap
U ext, Aext, external field

Us, Ap field created by the beam

and neglecting individual particle-particle interactions.



Vlasov's equation treats collisionless plasma, where individual particle-particle
interactions are negligible in comparison with the collective space charge field

Quantative treatment of validity of collisionless approximation dynamics to particle
dynamics:

n - particle density within the beam
r - the average distance between particles.

nri=1 ,or r=n13

Individual particle-particle collisions are neglected, when kinetic energy of thermal
particle motion within the beam is much larger than potential energy of Coulomb

particle-particle interaction:

2
mvi o 4

2 dme, r

2

Vv, 1s the root-mean square velocity of chaotic particle motion within the beam:

mv2 _ kT
2 2
T 1s the “temperature” of chaotic particle motion
k=18.617342 x10° eV K" = 1.3806504 x 107’ J K is the Boltsman's constant.




Radius of Debye shielding in plasma: Ap =A/ = 2k L
qg’n

Combining all equation one gets:

r<<\V2m Ap or Np>>1, or Np =(27r)3/2n)LD
where Np is the number of particles within Debye sphere.
Individual particle-particle collisions can be neglected if number of particles w ithin

Debve sphere is much larger than unity (or average distance between particles 1s much
smaller than Ap).

Particle density within uniformly charged cylindrical beam of radius R, with current /,
propagating with longitudinal velocity fc, is

I

n=—-—-»~1
7t g Bc R?



Hamiltonian equations of motion

Motion of a charged classical particle in an electromagnetic field is described by
Hamiltonian dynamics. The three corresponding canonical conjugate variable pairs
are (x, P,), (v, P,), (z, P.). The equations of motion then follow from Hamilton’s
equations:

d P>  d 0P, & oP," (1.27)
P._ 0H  dy_ oH  gp,_ oH
& axc  d&  ay’ d oz (1.28)

As an example, taking a partial derivative of the Hamiltonian with respect to P,
yields the equation for the rate of change of the particle’s x-position

dx _ ¢ (Px-qAx)
dt «/m202+(Px—qAx)2+(Py—qu)2+(PZ—qAZ)2 ' (1.29)




Canonical momentum P = (Px, Py, P;) is related to mechanical momentum
p = (px, py, Dz) via the expression:

p=P-gA (1.30)

Note that the denominator in Eq.(1.29) is actually mc7, where the relativistic
factor y 1is:

(Py-qA )2+(P -qA )2+(P -gA )2
y=\/1+ A N S (13])

m-c

Analogously, the equations for the rates of change of the y- and z - positions
of the particle can be derived. So, the set of equations for the rate of change
of the particle’s position is

de _ (Px-qAy)  dy _(Py-qAy) & _(Pz-qAy)

At my ° At my ’ dt my (1.32)



Taking partial derivatives of the Hamiltonian with respect to the particle’s
positions, the equations for the rate of change of the canonical momentum vector
are:

@=L[(px_ Ax)an+(P - A)%+(P - A)aAZ]- oy
4 Sy q P v - qAy . 7~ 44z o qax , (1.33)
dP OA, 0A 0A 0
Y= 9 [(Py-gA) ZE2E + (Py-gA) =2 + (P, - qA) Z22] - ¢ v (1.34)
& my dy dy dy 0y
OA, 0A 0A 0
dP; — 9 [(p,-qA) %25 + (Py-qA) P + (P - qA) 9] g v (1.35)

a  my 0z 0z 0z dz °



It 1s more common to 1ntegrate the equatlons of motion for mechanical

momentum, and use electric, E, and magnetic, B, fields instead of vector potential A
and scalar potential U:

. A - -
E:—aa—t—gradU B=rotA. (1.36)

The left-hand side of the equation for the rate of change of the x-component of the
canonical momentum, P, = p, + gA,, can be represented as follows:

dPe _ s, [ PAr | 0As gx PAxdy | 0As )

& d o  ox d dy d 9z di - (1.37)
A combination of this equation with Eq. (1.33), gives:
dpx _ ( 0Ax BU)+ v dAy  0A, ) + d0A; 0A,
LA P v (1.38)

dt ot ox ox  dy ox 0z



Applying the same derivations for p, and p,, the final set of equations in Cartesian

coordinates 1is:

dx _ Px
a my”’
dy _ Py
a my?>
dz _ Pz
a my?”’
d px Py Pz
=q (E, + B, - B
& =q ( my my y)
dpy q(E Px B + pZ Bx)
dt mYy mYy ’
dp; Px Py
=g(E,+ 2B, - B
& q (E; my y my ),
or
dx D dp — =
=L SL_g{E+ B}

dt  my dt

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)



1.4. Canonical Transformations

In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates (q,p,t) —
(Q,P,?) that preserves the form of Hamilton's equations. Hamiltonian equations of motions are

dq. oH dp; _ oH

dt  ap, dt  dq,

New variables also obey canonical equations of motion

dQ _oH dp; _ oH (5.1)
dt 0Py’ dt oQ '

where H' is a new Hamiltonian. New v ariables can be considered as functions of old
variables and time Q; = Q; (p;,q;b) » Pi = Pi (p;,q;) - Transformations from old variables
to new variables, which keep canonical structure of the equation of motion (5.1) are
called canonical transformations.




From classical mechanics it follows, that both new and old variables obey principle of

least action :

d

J

(

(

(> pidg; -Hdt)=0

(> PidQ -Hdt)=0

(5.2)

(5.3)

That means, that integrands in eqs. (5.2), (5.3) are different as total differential of
arbitrary function F of coordinates, momentum and time:

S pidg-Hdt=3 P;dQ-H dt + dF, or

dF=) pidg; - P;dQ + (H'-H)dt

Function F 1s called generating function of transformation.

(5.4)

(5.5)



Type 1 generating function

To be a total differential, equation (5.5) has to have the following form:

aF=F o g +5 aQdQl + O dt (5.6)

From comparison of equations (5.5) and (5.6) it is clear, that the variables and the new
Hamiltonian have to obey the following equatons:

9F 9F 9F
=gy Pi=- 1o (H'-H)dt= " dt (5.7)

Therefore new Hamiltonian is connected with the old one via relationship

g OF
H=H+ " (5.8)

Equations (5.7) provide canonical transformation from old variables to new variables, if
generating function depends on old and new coordinates:

o0F; P = 0F;

il =50 =F1@.Q0 (5.9)

Pi =




Type 2 generating function

Let us rewrite eq. (5.5) as follow:
dF= > pjdq -» PidQ +> QidP; -> Qi dP; + (H -H)dt (5.11)
Let us introduce new generating function Fp
Fp=F+) PiQ, dFp=dF+) PidQ+) QdP; (5.12)
For new generting function the following equation is valid:
dFy=) p;dg + D QdP; +(H'-H)dt (5.13)

Equation (5.13) indicates, that generating function of the second type is a function of old

coordinates and new momentum F» = F; (q, P.t) . Relationship between new Hamiltonian
and the old one is given by equation (5.8). Again, to be a total differential, the following
eqautions have to be valid, which form the second canonical transformation:

_ by
dq;

el 3)
~ 9P;

Qi

Fr =F»(q,P.) (5.14)

Pi




Type 3 generating function

To find third canonical transformation, let us add and subtract z q; dp; fromeq. (5.5):

dF =) pjdg; -Q PidQ +> qidp; - > q;dp; +(H - H)dt

Introducing generating function of the 3rd type

F3=F-) p;qi dF3=dF-) p;dqi- > q;dp;

the eqution for total differential of the generating function is as follow:

dF3= - P;dQ -> qdp; +(H -H)dt

Last equation forms the canonical transformation of the 3rd type:

) 0F3 _ 0F3

P; = = -
T | [T oy

F3 =F3(Q, p’t)

(5.16)

(5.17)

(5.18)

(5.19)



Type 4 generating function

Forth canonical transformation is attained via adding and subtracting of the z Q; dP;
from Eq. (5.5):

dF =) pidg -Q PidQ +Q qidpi -> qidp; +> QdP; -> QdP;+(H' -H)dt
Generating function of the 4th ype is defined as follow:

F4=F-) pig +2 PiQ (5.22)
It results in the eqution for total differential of the generating function:

dF4= - qdp; +) QdP; +(H -H)dt (5.23)

Canonical transformation of the 4th type are descibed by equations:

_ k4 )
=" ap, Q= JP;

Fs = F4 (p,P,1) (5.24)




Example: Canonical transformation from Cartesian to cylindrical coordinates

Very often, particle dynamics in accelerators is described in a cylindrical
system of coordinates (7, 6, z), because of axial symmetry inherent to
accelerating structures.

\Y

i . “x

Relationship between cylindrical and Cartesian coordinates.



A canonical transformation of the Hamiltonian from Cartesian to cylindrical system
of coordinates is accomplished by selecting a generating function of the
transformation, as a function of new position variables and old momentum:

F5(r, 0, z, Px, Py, P,)=-1rPycosO -rPysin0-zP;. (1.45)

The relationships between new and old variables in a canonical transformation are
obtained using the equations

_ 0F3 _ 0F;3 _ 0F3
x=-T 0 y=-Tt 2= (1.46)
JP, oPy 0P,
0F3 0F3 0F3
P, =- Po=- P, =-
ar 90 Z 0z (1.47)

Calculation of the partial derivatives, Eqgs. (1.46), (1.47), gives the relationship
between Cartesian and cylindrical coordinates:

x=rcos0, y=rsinf 2 =2z, (1.48)
P =Py cosO+ Py sinf (1.49)
Po=r (-Py sin@ + Py cos0) , (1.50)

Pz=Pz. (151)



Inverse transformation of Egs. (1.49) (1.50), (1.52), (1.53) gives

P.=P, cos6 - Lo sing (1.56)
2 2

Py =P, sin0 + Po cos6 (1.57)
4 5

P, =P;. (1.51)

Ax=A; cosO- Ag sin0 , (1.58)

Ay = A, sin + Ag cos0 . (1.59)

A, = A, (1.54)



After a canonical transformation, the new Hamiltonian is expressed m
terms of the old one as

K=H+%3

0 - (1.55)

Since the generating function, Eq. (1.45), does not depend on time
explicitly, the new Hamiltonian equals the old one, K = H:

H=c v (me)” + <f; 6 gAe) + (Pr- gAY + (P; - A" +qU . (1.60)
Hamilton’s equations in cylindrical coordinates read

dr _ 0H do _ 0H dz — 9H
dat 0P dt 0Pg’ dt  O0P;’ (1.61)
dp, _ OH dPs _ OH . _ OH

dt or’ dt 00 ° dt dz ° (1.62)



Calculating the partial derivatives, Egs. (1.61), the equations for
particle position are

dr _ Pr-qAr
dj— v (1.63)
do_ 1 (Pe
& myr (7 - qA9) (1.64)
dz_Pz‘qu
G mr (1.65)

Again, instead of canonical momentum, it is more common to use
mechanical momentum, components of which are obtained from Eqgs.

(1.63) — (1.65) by

pr=my AL=P:-qAr (1.69)
po=my rd@="0-qaq, (1.70)

p.=my %Z=Pz—qu. (1.71)



Equations of motion in cylindrical coordinates are

dr _ Pr do _ Po & _D:
da my’ da myr da my
dpr_ P60 (E,+ P9 B, . P:

(1.81)

(1.84)

(1.85)

(1.86)



1.5. Dynamics in axial-symmetric field. Busch’s theorem

An area of special interest in beam dynamics is an axially-symmetric
static field, £,= 0, B,= 0, which is common in beam transport. In this
case, all partial derivatives over the azimuth angle are equal to zero,

0/06 = 0, and the canonical angular momentum is a constant of
motion:

Po=my r2do r qAg = const
I : (1.87)
The angular component of the vector — potential 1s given by

Apg=_T
o= (1.88)

where ¥is the magnetic flux

‘r
Y=| B.2rr dr

J O

(1.89)



Substitution of Eq. (1.88) into Eq. (1.87) gives:

Pdoy 4o ¥

= const
PR Py, . (1.90)

If we denote the initial conditions as éo, 1o, o, EQ. (1.90) can be rewritten as

2 0-r20,=—9 (P-w,)
2y : (1.91)

which is known as Busch's theorem. It states that change in angular
momentum of a particle in a static magnetic field is defined by the change in
magnetic flux comprised by the particle trajectory.

Busch's theorem can be represented as

: P
0= 0 r
my r’ , (1.93)
where @; 1s the Larmor frequency of particle oscillations in a longitudinal
magnetic field

L = —qB

oy - (1.94)



On Busch'’s theorem for particle in axial-
symmetric magnetic field.
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1.6. Beam emittance

Beam emittance is the area, occupied by the particles in the phase plane (x, dx/dz)

......

't
N

1 yy'
A

Results of beam emitance measurements in GSI UNILAC accelerator (W. Bayer et al.,
Proceedings of PACO07, Albuquerque, New Mexico, p. 1413 (2007) ).
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Emittance measuring device.



The phase-space area occupied by the particles on a plane of canonical-conjugate variables
(x, P,), 1s called the normalized emittance, and is given by

g =1

dx dPy,
mwmc

Taking into account that dx/dz = p./p., natural and normalized beam emittances are connect
via the relationship

&= LY 3«

With an increase of beam energy, longitudinal momentum p, also increases. Consequently, the
value of dx/dz , which is inversely proportional to p., decreases, resulting in a decrease of beam
emittance, 3. However, normalized beam emittance remains energy-independent. Because of this
feature, normalized beam emittance is convenient for comparison of beams with different

energies.



Representation of beam emittance as an ellipse

In the phase plane, the beam is usually approximated by an ellipse. The area of
ellipse with semi-axes M and N is simply

S=nMN

The general ellipse equation can be written as
yx2+2axx‘+[3x'2=3

parameters ¢, f3, yare called Twiss parameters

,
ax
d

Ellipse of the beam at phase plane of
transverse oscillations.



Let us express the ellipse parameters in terms of the semi-axes M, N and the angle .
In the (x, x) system of coordinates, the ellipse is upright, and is described by the equation

— 2
( )+(x)—1

The transformation to this system of coordinates is given by

X=Xxcosy+x siny

X =-XxSiny+x cos ¥

Comparison with previous ellipse equation yields the relationships between Twiss
parameters and ellipse parameters:

=N .M, siny cosy

M N

B= N in? v+ M cos?y
M N

y=N cos2y+ M sin2y

M N

From last equations it follows that By - o2 = 1.



Among the three Twiss parameters «, 3, 7, only two are independent, while the third one is

connected via the identity By - o2 = 1. We can take advantage of this fact to reduce the number
of variables. Let us introduce two new parameters

c=1Vp
G‘:-l
VB

In terms of these parameters, the ellipse equation reads

2
AZ+(xo'-X G)2=
o2

Combining all we get a relationship between the new parameters and the ellipse parameters:

o= \/sm WN+C0S21//]]\\4,

'——(—- M) sin2y
20 N M



Let us now define beam spot size and beam divergence via the parameters of a
representative ellipse. Zeros of an ellipse are obtained by substitution of the values x = 0 or

x"= 0 into the ellipse equation:
x(x'=0)=+ 1/ 2
Y

x'(x=0)=if
B

< A

“l

w-

W

AVU%

T3

0,1/3_
Y

Ellipse at phase plane (x, x).



To find the extrema of an ellipse, let us rewrite the ellipse equation as F(x, x’) = (0, where

F(x,x‘)=)/x2+2axx'+ﬁx'2—3

dx — dx' _
dx' > dx

Ultimately, we need to find a solution to the equations 0. According to the

differentiation rule of an implicit function,
dF_
dx —_dY __ 20x+2Bx ~0
d'  dF  2yx+20 X
dx

which has a solution x" = - x a /. Substitution of the obtained value of x’ into the ellipse
equation gives Xmax ==+ V3. The value of R = x,,,, is associated with the envelope size of
the beam

R=1VB>

A corresponding point at the ellipse x'(x,,.,) 18:

x' (xmax) =0 f
5

Analogously, for another extreme point:

X'max=x VY3 X (X'max) =% & \/3



1.7. Root-mean-square (rms) beam emittance
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Consider a beam with a distribution function f(x, P, #) and let g (x, P, ) be an arbitrary

function of position, momentum, and time. The average value of the function g (x, P, 1) is
defined as:

’ o(x, P, 1) f(x, P, £) dx dP

<g>=""

o OO o OO

’ ’ f(x. P. 1) dvdP

The integral in the denominator is just the total number of particles. Now, let us consider
some examples of physically significant average values. For g(%, P, 1)=x, the average value

<=1 I x f(x, P, 1) dx dP

gives the center of gravity of the beam in the x-direction.



Analogously, for g(x, P, 1) = x2, the average value of x” is defined as
<=1 ’ ’ x2 f(x, P, ) dx dP
N

and 1s called the mean-square value of x. The correlation between variables x and P, 1s given
by the following expression: taking g(;, P,t) =x Py

o CO

<xPx>=1’ x P f(x, P, t) dx dP

N |

J -0

An expression of the form <x”i y2 z73p4psplo> is referred to as the n” order moment,
My, ny, ns, na, ns, ne Of the distribution function, where n = n; + n,+ n3+ ny, + ns + ng:

> OO el * 00

<x"1yn2 zn3 pli4 pits phies, — 1 I I

e ’ dx dy dz dP. dPy dP.

J-owo J-oo J-oo J-oco |

xnlyn2Zn3P;l4P){l5PZn6f(xa ya Z> P)C> Py, PZa t)



The following combination of second moments of distribution function is called
the root-mean-square beam emittance:

2 2
dpms = V <> <K >-<x 1>

and the normalized root-mean-square beam emittance is given by

Erms =W}CV <x2> <P 2> - <xP>2

By the reasons discussed below, beam emittance is adopted as the value, four times
large than rms emittance

3 3
5=4 V<x2> <x?> - <x x'>



Consider the rms beam emittance concept in more detail. The density of particles in
phase space, normalized by the total number of particles A, is described by a distribution
function p, (x, x'), which is an integral of the beam distribution function over the

remaining variables:

0] 0 0]

pX(x7-x')=1I I ’
N.—OO J-00 J-0 |

- 0

0o

fx,x,y,y,2,2) dydydz d?

It is convenient to consider distributions in phase space with elliptical symmetry:

Px (X, x') = px (Yx x2+2 oxx x'+ By x,2)

Such distributions have particle densities, p, (x, x'), that are constant along concentric

ellipses

2=y, x2+2 aex x + By x2

but are different from ellipse to ellipse, so one can write py (x, x) = px (5). Namely,
equation this describes a family of similar ellipses, which differ from each other by
their areas. Using previous transformation the ellipse equation can be rewritten as

2 2
¢ =(x0y - X'oy) + ()
X



Let us calculate rms beam parameters and rms beam emittance for an arbitrary function
px (x, x). We begin by changing variables:

X =7y cos@
{ X
xG)'C - X'Oy =1y SinQ
Now we rewrite it as

X=7yx0xCOSQ

Ix

!
X' =r1y0xcosQ -
Oy

sinQ

The absolute value of the Jacobian of transformation gives us the volume
transformation factor of the phase space element:

ox  ox
5 5
dx dx' = (abs| & C Ndre dp=ry dry do
ox' ox'
ory oQ




Then, the rms values are:

2w [
<x?>= I (rx GxCOS(P)sz(”)%) Fxdry do

JO JO

.271- - 00

12

<x'> = Ix

Oy

! ) 2
(ryOxcos @ - sin @) Px(”%) Fxdry do

Iy Oy COSQ (Tx G)'Ccosgo - X SinQ)py (r)%) ry dryd@

.271- - 00
I — Fx
x> = I

X

Let us take into account previously introduced expressions:

o= 1B
o'=-_0_
/B
By - a?=1



Calculation of integrals over ¢ gives:

- 00
<x?2>=mwBe| 1R px()dry

JO

* OO

Py () dry
JO

2o _
x> =7myy

* Q0

<X X>=-T Oy r)? px(r%)cbfx

Therefore, beam emittance is given by

* CO

dx =4n r? px(rd) dry




Twiss parameters

| 2
ax=_4<xx> ﬁx=4<x> yx=_4<x>
9x ax 3.x

4 <x’2>)x2 D@ <xd>y oy 4 <x2>)x.2 =3,
Ix Ix Ix

Rms beam ellipse

Beam distribution and rms ellipse.



Example: Uniformly populated ellipse

Consider an example, where the beam ellipse has an area o f 7z4,, and 1s uniformly populated
by particles. Particle density is constant inside the ellipse rZ = A,

2y — 1
Px(rg) =——
x \Fx A,
Calculation of the rms value, <x?>, gives:
VA, \
<x?>=1 By r Px(’”)%) dry = —Zﬁx

J O

21073

11073

1 .10—3

—21073

1 1 1
-1.0 0.0 1.0

X

Uniformly populated ellipse at phase plane (x, x)).



The beam boundary is given by
Ry=VAy ﬁx

Radius of the beam represented as a uniformly populated ellipse is equal to twice the
rms beam size:

R=2V<x?*>
Rms beam emittance:
VA,
3= 4 r)g’ dry = Ax
Ax .

o

Therefore, the area of an ellipse, uniformly populated by particles, coincides with the 4 x
rms beam emittance. This explains the choice of the coefficient 4 in the definition of
rms beam emittance.



1.8. Particle distributions in phase space

Consider quadratic from of 4-dimensional phase space variables:
_ ' L \2 X 2 ' ) Y \2
[=(0x—0x)+(—) +(O0y—-0y)+(—)
o o,

Consider different distributions /' = f(I) in phase space which depend on
quadratic form:

2
Water Bag: T2 F2’ I<F,
=t 0, I>F
6 1
: = l1-—
Parabolic: f 2 F02 ( F )
Gaussian: f= : ex (—L)
| 7F T F,

Normalization: T T T ]o fdxdx'dydy'=1

—0Q0 —00 —00 —00



Projection of distributions on phase plane

*CO0 [ CO

Pr (xx") = fx, X'y, y) dy dy

00 J-00

. ! . foz U Ovy = T
Let us change the variables (> ¥ )for new variables 7T,y - Oy cos Yy
3; =Tsiny
y

Phase space element dy dy’ is transformed as

dy 9y
dydy =T  Vlaray=Tdrdy
ay' dy'
T oy
The quadratic form is I=r2 +T?

. . 2 2
where the following notation is used: 75 = (0’ + 04'x)” + (?) :
X

With new variables, the projection on phase space is

oy (X, =1 fr2+T*dlr?

J O



——, [=r’+T? <F,
. . . F
Water Bag distribution F={ Tr,
0, I>F
1s restricted by surface r2+T>=F,, T>=F,-r2
T2 :
v _ 2 2__2 _rFx
Projection of Water Bag distribution on (X,X) pe (. %) = aF2 |, a F, . Fo)

For Parabolic distribution, projection on x, x’ plane is

'T12 5
2 2 2
pee =—b—f L arr= 3L

For Gaussian distribution projection on x, x’ plane is

eel

2 2 2
exp (_ %) de :L exp (_ ri)

0 TL. o o

pr (x, ¥)=—1_
nF 2

JO
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Root mean square emittance

. _ 3,0
Four rms beam emittance X =4n 1y Px (1) dr

Water bag distribution, is limited by the surface
r¢ +r¢ < Fo, or
r)g S F() - }")%

Maximum value of 2 is achieved when r; =0 and vise versa

Therefore, projection of water bag distribution, is limited by
. max = Fo. Substituion of expressions for p,(r2), and integration gives:

\F, .
H=3 R(-"dr,=2F,,
3

o o



Analogously, for parabolic distribution

VF, -
(-1 dr =te
2

o

For Gaussian distribution

2
e exp (- )dr,=2F, ,

o

3x=i
F()

10



Fraction of particles residing within a specific emittance

The distribution p () is the particle density in the phase plane (x, x"),
divided by the total number of particles, N. Fraction of particles

n=NBx/N,

within the emittance 3 is an integral of p () over an ellipse area of 3

21 \/; i)
l I P redrydo=m | pe() dri



Distributions on phase plane are:

2
Water bag oy =i(1—;ri)
37T 3 3

2

2
Parabolic  prZ =3 1-1&)
27T 3¢ 2 3,

2
Gaussian px(r%) =2 exp(-2 I
7T Oy Iy

Fraction of particles within phase space area is:

Water bag NG _4 -1
NO 3 3 3 3%

2
Parabolic - 2=3(2)[1-L 341 (3]
NO 2 3x 2 3)( 12 3x
Gaussian NG _ 1-exp(-2-2)

0 Ix



N/IN_,

8 / 8l’l’}’lS

Fraction of particles versus phase space area for different
particle distributions.



1.9. Emittance of the beam in particles sources

The ultimate goal of accelerator designers is to minimize emittance as much as possible. An
intrinsic limitation of beam emittance in particle sources comes from the finite value of
plasma temperature in an ion source, or the finite value of cathode temperature in an electron
source. Equilibrium thermal particle momentum distribution in these sources is in fact, close
to the Maxwell distribution:

2

F@) =n(——" exp (- L)
2rnkT 2mkT

Rms value of mechanical momentum 1is

<p?> = mkT

Beam radius is usual ly adopted to be double the root-mean-square beam size, R =2 V<x?>.
Fortunately, for particle sources, one can assume that <xP,> = 0 because there isn o
correlation between particle position and particle momentum. Therefore, the normalized
emittance of a beam, extracted from a particle source, is

8=2R k7T
mC2



Some sources can be operated only in presence of a longitudinal magnetic field, which
produces an additional limitation on the value of the beam emittance. For instance, in an
electron-cyclotron-resonance (ECR) ion source, charged particles are born in a longitudinal

magnetic field B,, fulfilling the ECR resonance condition 2w; = gy, Where w; is the
Larmor frequency of electrons and wyr 1s the microwave frequency. Canonical momentum
of an ion, P, = p, - gA,, in a longitudinal magnetic field B, is:

P, = Px - quZ Y
The rms value of canonical momentum is given by:

2 2
<Pi>= <p2>-qB.<pxy>+4 Ly <y?>

The first term describes the thermal spread of mechanical momentum of ions in plasma, and
is given by <p?> = mkT . The middle term equals zero because there is no correlation between
p, and y inside the source. The last term is proportional to the rms value of the transverse
coordinate <y?> = R*/4. As a result, we can rewrite <P2> as follows:

qBZR)z

2
<Pi;>=<p>> + (



The normalized beam emittance €, extracted from the source is

8:2R/\/ KTi 4 (4B:Ry

me 4 me

Therefore, the presence of a longitudinal magnetic field at the source acts to increase the
value of the beam emittance.



1.10. Space charge effects in the extraction region
of particle sources: Child-Langmuir Law

252 %
Planar Diode with Space Charge (Child-Langmuir Law)

Let us now include the effect of the space charge of the electron current in the
diode on the potential distribution and electron motion. To simplify our analysis,
we assume that all electrons are launched with initial velocity vy = 0 from the cath-
ode (i.e., they are moving on straight lines in the x-direction). This is an example
of laminar flow where electron trajectories do not cross and the current density is
uniform. We try to find the steady-state solution (d/3¢r = 0) in a self-consistent
form. The electrostatic potential is determined from the space-charge density p via
Poisson’s equation, with ¢ = 0, at x = 0 and ¢ = Vj, at x = d, as in the previous
case. The relationship between p, the current density J, and the electron velocity
v follows from the continuity equation (V - J = 0 or J = pv = const). The veloc-
ity in turn depends on the potential ¢ and is found by integrating the equation of
motion. Thus we have the following three equations:

9 (12¢ P ) , .
‘¢ = —5 = —— (Poisson’s equation), (2.129)
dx- €
J, = px = const (continuity equation), (2.130)
"?"‘-.2 = e¢(x) (equation of motion). (2.131)

-

*From M.Reiser, Theory and Design of Charged Particle Beams, Wiley, 1994
!

eJe)



Substituting & = [2e¢(x)/m]"/? from (2.131) into (2.130) and p = J, /X from
(2.130) into (2.129) yields

d*¢ J |
= - 5 ‘ 2.132
dx®  ep2e/m)VE ()12 ( )
where the current density J = — ./, is defined as a positive quantity. After multipli-

cation of both sides of Equation (2.132) with d¢/dx, we can integrate and obtain

dpN\* 4 s
(d-\') —e()(Ec/'rx)'f'3¢ +C. (2.133)

Now ¢ = 0 at x = 0, and if we consider the special case where d¢/dx = Oatx =0,
we obtain € = (. A second integration then yields (with ¢ = Vy at x = d)

1/2 —1/4
R ONEN
3 € m

Or
x\43
¢(~f)=Vu((-1) . (2.134)
with the relation
4 202 vi2
J = 660(;) T (2.135)



Space-charge

Ly Temp. limited
limited

operation

operation N T
-
0 L0
0 Va Vv

Current-voltage relation at constant cathode temperature (from
S.Isagawa, Joint Accelerator School, 1996 ).



In 10n sources, the shape of plasma meniscus is determined by the balance between plasma
pressure and applied electrostatic voltage for ion extraction.
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To determine shape of plasma memiscus, let us consider self-consistent problem for the beam
extracted from spherical emitter of radius R; (plasma) and spherical collector of radius R,
(R,<R;). Saturated current density extracted from the plasma

We will assume that all particle have the same extracted velocities, so the current density
is j = p v, and particle velocity is

where U is the potential between two spheres. Therefore, beam space charge density is

J
p =
R, 2qU

Mg "

On derivation of Child-Langmuir law
between spherical surfaces.



Let us substitute space charge density into Poisson’s equation in spherical coordinates:

ld ,dUu 1

(=)=
r-dr dr £, /ZqU
m

Solution of Poisson’s equation for concentric spheres is

j _4\/58\ﬁ 1
U9 Nm R
R

where =Y —-03Y*+0.075Y°, Y=In—->%

1
This is the Child-Langmuir law for spherical surfaces. When the distance between emitter and
collector is much smaller than the raduses d = R; - R, << R, the following approximations can
be used:

R-d _d 1,.d, 1d

d
Y =In ~- L Ly 3
( 1 ) R 2(R12 2(Rlz)
| 1 d
~—(1-16—
Rla’ dz( Rl)

With this approximation, Child-Langmuir law is expressed as

J —4\/58\/EL(1—16i)
U 9 “\ma* TR




Let us apply now obtained result to the problem of plasma beam extraction from small extraction
hole of the radius R,,,. From Fig the relationship between extraction radius R,,, and radius R, is

__h _h
' sin® 6
where 0 is associated with initial beam slope.
V-0 Viv
ield |
pLASMA. Vocu:;umed fie |
// d Field Free Region
/ ‘R\-_
2 il i

'-""7-7 { : lw- 2'1!5 - 91
i | Ched plasma
_ / boundary

Scheme of simplified ion optics in beam extraction region (J.R.Coupland et al., Rev.
Sci. Instruments, Vol. 44, No 9, (1973), p.1258.



Beam current density j=—

Substitution of expression for beam current density into Child-Langmuir law reads:

1 NGy q 1o d
= E . J—(—)(1-1.6—06
U3/2 9 0 m(d )( rl )

Beam perveance: P =

4\/§7t

Child-Langmuir perveance of one dimensional diode P, = 9 g, 1(;—‘)2
m
- n b
Extracted beam slope (plasma meniscus): 0=0.625—(—=-1)

0

If P, << P, it corresponds to the extracted beam with negligible intensity, and initial
convergence of the beam is defined by extraction geometry only

6=-06251L
d



According to Child-Langmuir law, the potential inside extraction gap has the following z-
dependence:

wm=m“%2f”
ext

Inside extraction gap particles move in the field, which, in the first approximation, has only
longitudinal component

_4 Z1/3
B.=3 Vet
ext

Outside extraction gap the field drops to zero.

/Extraction gap
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JE,

=0
0z

Due to equation divE = 11r§r(r E,) +

any change in longitudinal field results in appearance of transverse field component, which (in
this case) defocuses beam:

_ 1 oE, 'd'~_LaEZ
i f oz O T2 o
o _ . d’r g 10E.
Eqiuation of particle motion: — =T
dz myv. 2 0z
Slope of particle trajectory at the exit of the gap:
dr oE rE r
V=A(—)=- qzrj “dz = qerZ: =
dz 2my 0z 2my; 4U,, 3d

Finally, divergence of the extracted beam is as follows:

r, P r r P
w=0+y|=06251 (=L -D+—"|=0291(1-2.14-L
6+l il i o )

o o



