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Introduction
 Computer codes are invaluable as an analysis tool for calculating 

E&M fields of RF components that have complex geometries 
whose fields are difficult or impossible to solve analytically

 Helpful in understanding the component and its effects on beams 
 Components in an accelerator interact with and affect the 

performance of charged particle beams. 
 Active components provide E&M fields to keep the beam in the 

design orbit. These include RF cavities, kickers, injection and 
extraction kickers, …

 Passive components may introduce impedance to the beam and 
cause beam instability.  These include vacuum chambers, bellows, 
joints, BPMs, target boxes, pumping slots, … 
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Voltage / Shunt Impedance / Quality Factor

 Voltage is the integration of the longitudinal electric field along the axis.  The 
finite time of travel of the beam through the cavity is accounted for by the 
exponential term, i.e., the “transit time factor”.

 Shunt impedance, Rs is an important measure of the efficiency of the 
accelerator in transferring energy to the particle beam 

 Q is a measure of the rate at which rf energy is removed from the cavity.  It is 
used to determine the cavity bandwidth and modal interaction in the cavity.
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Material Independent Parameters: R/Q and G
 R/Q is a parameter that eliminates the dependence on the precise 

material properties of the cavity. It is purely geometry dependent.
 G is used to compare various cavity shapes regardless of their size and 

material construction.  

These parameters allow the comparison of given 
accelerator cavity designs based purely on the merits of 
their geometries, not on the details of their construction 
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Loss Factor

 The loss factor quantifies 
the loss of beam energy 
as it passes through a 
structure. 
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Quality Factor

 Unloaded Q, Qu, is a measure of the ohmic losses in the rf cavity walls
 External Q, Qext, is a measure of ‘losses’ due to coupling of the cavity 

fields to the outside.  Coupling may be to input coupler(s), probes, and/or 
dampers.

 Loaded Q, QL, is a measure of the totality of losses due to the cavity 
assembly interaction, i.e., due to Qu and Qext.

 QL determines the overall cavity bandwidth and is important when 
considering microphonics and Lorentz force detuning.  

 QL is also useful in determining stability characteristics for modes that 
interact strongly with the beam.

 Typically, Qext is adjusted in order to ensure beam stability.  This is 
especially important for high current machines and superconducting 
cavities.
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Qext: Energy Decay
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Qext can be measured if the 
decay time constant is known
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Qext Validations with JLAB Cavity

E-Field decay

Excitation pulse
Waveguide boundary 
conditions at ports

Observed field (energy) decay as 
a function of time inside the cavity

Excite cavity from 
one RF (HOM) port

MWS Simulation
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Qext Validations with JLAB Cavity

Time-dependent energy 
storage in the cavity

ns8.23=τ

Simulated and measured Qext
results in good agreement

276== ωτextQ

External Q is calculated from 
decay time of the energy
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Qext MWS Eigenmode Calculation

 Calculating Qext from the energy decay is a tedious process that must 
be performed for each mode.

 MWS has an automatic calculation for Qext in the eigenmode solver.
 MWS solves for all calculated modes in a single run

Waveguide 
ports

Qext=290

Qext=894
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Qext: Balleyguier’s Method

 Balleyguier’s method requires two simulations runs to calculate many modes.
 Useful for any generic eigenmode solver including MWS, Mafia, and HFSS.
 Valid for a single mode coupled out of the cavity

P
UQext

ω
=

dSHdSEP
SS
∫∫ ==

22

22
1 η
η

S is along a cross-
section of the coupling 
transmission line

dVHdVEU
VV
∫∫ ==

22

22
µε V is the volume 

within the cavity

Determination of P requires 
port absorbing boundary and 
possible mode excitation 

Power traveling  
out of the cavity

Energy storage 
in the cavity

USPAS June 2010



Qext: Balleyguier’s Method
Method transforms a 
traveling wave problem 
to a standing wave. 

Add (subtract) an equal 
amplitude incoming 
electric field to the 
outgoing field to create a 
standing wave
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All solutions can 
be calculated 
with two runs of 
the eigenmode 
solver

Qext can be 
calculated by 
simply summing 
the two results 
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Example Coaxial Damper
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