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Introduction to longitudinal emittance

Exercise 1

θ
l

A pendulum is made up of a massless rigid rod of length l, and a bob of mass m. The
equation of motion of the pendulum bob swinging in a gravitational field is
τ = −~r × ~F = I d2θ

dt2
, which may also be written −l sin θmg = ml2(d2θ

dt2
), where the moment

of inertia is I = ml2 since the rod is massless. Then the equation of motion is
θ̈ + g

l
sin θ = θ̈ + ω2

0
sin θ = 0.

a) Is this equation linear?

b) What form does this equation take for small angles?

c) Write an expression for the total energy of the system,
Etotal = Kinetic Energy (KE) + Potential Energy (PE). Write the kinetic energy in
terms of the angular momentum L. Define -mg∆h, the potential energy, so that it is
zero when the pendulum is at θ = π/2, and -mgl when the pendulum is at θ = 0.

d) What are possible phase space variables for this system?

Exercise 2

Use the same pendulum system as in the previous exercise. Let’s choose L and θ as our
phase space variables. If the bob has certain phase space coordinates L and θ, it will not
move. These are called fixed points of the motion.

a) Intuitively, what will the fixed points for this system be? Are these fixed points
stable or unstable?

b) The fixed points can be found by imposing the condition that there be no evolution
of the motion, or, L̇ = 0 and θ̇ = 0. Write θ̇ in terms of L. For what values of L will θ̇
be zero?
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c) Find an expression for L̇ by taking the time derivation of the total energy (which is
equal to zero, since energy is conserved). For what values of θ will L̇ be zero?

d) In order to determine which of the fixed points are stable, take the second derivative
of the expression for the potential energy. Substitute the values for θ that correspond
to the fixed points; which of these gives a positive second derivative?

e) Examine the nature of the motion near the fixed points. Start with the equation for
the energy of the pendulum derived in part (c) of Exercise 1, but use angles with
small deviations from the values at the fixed points. For angles near θ = 0, the first
few terms of the small angle expansion of the cosine function may be used
(cos θ ≈ 1 −

θ2

2
). What functional form do the trajectories in phase space have near

θ = 0? For angles near ±π, use cos θ ≈ cos (π + ε), ε small. What functional form do
the trajectories in phase space have near θ = ±π?

Exercise 3

The pendulum of the previous exercises was subject to a restoring force due to the
gravitational field. Now consider longitudinal motion of particles in a particle beam. What
might be the phase space variables of this motion? What is the source of the longitudinal
restoring force? How is this restoring force functionally different from the restoring force
due to quadrupole magnets? How will this affect a phase space plot of the longitudinal
motion?

Exercise 4

Derive an expression for the area of a stationary bucket. Take the case after transition
when φs = π. This may be done as follows:

• Use the condition that the bucket height goes to zero at φ = 0 to evaluate the

constant in (∆E
Es

)2 +
β2eVrf

πhηEs
(cos φ + φ sin φs) = constant.

• Integrate to get the area under the separatrix, A =
∫

∆Edφ

• Now you have the area in eV-rad, to get your units to a the more standard eV-sec,
multiply by the conversion factor Trf/2π [sec/rad], or simply divide your result by
ωrf .

Exercise 5

Evaluate the bucket area for the APS storage ring, which has a circumference of
C = 1104 m, harmonic number h = 1296, synchronous energy Es = 7 GeV, peak RF
voltage Vrf = 9.5 MV, and α = 1

γ2

t
= 2.7996 × 10−4. You may begin by calculating the area

of a stationary bucket, but actually, the APS buckets are not stationary as they must



replenish the energy loss in the beam due to synchrotron radiation. Accelerating
(’running’) bucket areas are smaller than stationary bucket areas, and cannot be calculated
analytically. However, the stationary bucket area may be adjusted to the accelerating
bucket area by multiplication with a scale factor. How much smaller a running bucket is
than a stationary bucket depends on the synchronous phase (all other parameters
remaining the same). Numerical factors for various phases to adjust the stationary bucket
area have been tabulated. A portion of the tabulation is given below. If a synchronous
phase lies between values in the table, linear interpolation may be done. The radiation loss
in the APS storage ring is 5.45 MeV/turn.

φs factor

10.4 deg 0.688
20.5 0.483
30 0.333

40.5 0.206
50.4 0.119

Exercise 6

Now let’s get an expression for longitudinal emittance, εL, and bunch length, σt, in the
non-accelerating case (stationary bucket). Proceed as in Exercise 4 with the following
changes:

• Let the phase error of the particle motion being considered be small, so that cos φ
may be expanded to (1 −

φ2

2
).

• Switch from (∆E, φ) phase space variables to (∆E, t) phase space variables (since
usually the time spread of the bunch is what is measured). This can be done by
letting φ → ωrf t.

• Start by considering the phase space area enclosed by a single particle trajectory. Call
the maximum time excursion of the particle tmax, the energy error is 0 when t = tmax.

• To get an expression for longitudinal emittance (as opposed to the phase space area
enclosed by a single particle trajectory) replace tmax with σt, the time spread of the
bunch.

Re-write the expression you derived to express σ2
t as a function of longitudinal emittance

and bucket area. Which of the above steps made this an emittance calculation rather than
a bucket area calculation?



Exercise 7 (From Steve Holmes)
Calculate the rms bunch length for a beam circulating in an storage ring with the following
parameters:

Energy = 1 TeV
Vrf = 1 MV
γt = 20
frf=53 MHz
h = 1113
εL = 1 eV-sec


