



# Pinhole Cameras – Operation and Analysis

Jeff Corbett<sup>a</sup>, Alan Fisher<sup>a</sup>, Walter Mok<sup>a</sup>, Weixing Cheng<sup>b</sup>

<sup>a</sup> - SLAC National Accelerator Laboratory

b - Brookhaven National Laboratory

Beam Diagnostics Using Synchrotron Radiation:

Theory and Practice

US Particle Accelerator School

University of California, Santa Cruz

San Francisco — 2010 January 18 to 22



### Small beams need to be measured

- Low-emittance beam at 3<sup>rd</sup> generation light sources and HEP accelerators (ILC damping ring, superB, ERL, SLS /SOLEIL /Diamond /SSRF /ALBA /PETRA-III /NSLS2 etc...)
- Horizontal emittance ~ 1 nm.rad, vertical emittance ~ 10 pm.rad
- Typical beam size < 10um vertically (100um horizontal)</li>
- Q: How to measure such a small beam?
  - Visible light image of synchrotron radiation (diffraction > 50um)
  - Wire scan, laser wire (minutes for a full scan, 1-D)
  - Interferometer (~10um resolution)
  - Vertical beam size from  $\pi$ -mode radiation
  - X-ray pinhole (simple, ~5um resolution)
  - Fresnel zone plate (x-ray imaging of monochromatic beam, used at ATF, Spring-8 etc.)
  - X-ray refractive optics (monochromatic light, complicated)



### First Observation of Pinhole Image

"景到(倒),在午有端,与景长,说在端"《墨经》

The image is upside down, because of the pinhole in the wall.





墨子 (468-376 B.C.)



### Camera Obscura











### X-ray Pinhole Camera - Schematic







### SPEAR3 Pinhole, Filters, YAG Screen and Camera









### SPEAR3 pinhole results





Three optics available:

- Low emittance
  - Achromatic
  - Low-alpha

$$\sigma_{x}^{2} = \beta_{x} \varepsilon_{x} + \left( \eta \frac{\Delta E}{E} \right)^{2}$$

$$\sigma_{y}^{2} = \beta_{y} \varepsilon_{y}$$



## **BESSY-II Pinhole Array**



Used at ALS and ASP as well Beam size & divergence



# Optimize the pinhole size



If the pinhole is large, ray-optic 'spread' dominates

$$\sigma \approx \frac{w \cdot (d_1 + d_2)}{d_1}$$
 Geometric error

If the pinhole is small, diffraction dominates... Diffraction error

Other measurement errors include: Screen, CCD camera and chromatic error etc



# Optimize the pinhole size (cont')

$$(\sigma_{image})^{2} = (M \cdot \sigma_{source})^{2} + (\sigma_{blur})^{2} + (\sigma_{diffraction})^{2}$$

$$\sigma_{blur} = \frac{w}{\sqrt{2\pi}} \frac{\left(L_1 + L_2\right)}{L_1}$$

$$\sigma_{diffraction} = rac{\sqrt{12}}{4\pi} rac{\lambda L_2}{w}$$

L<sub>1</sub> Distance from source point to pinhole L<sub>2</sub> Distance from pinhole to screen M=L<sub>2</sub>/L<sub>1</sub>, magnification factor W pinhole size



# Optimize the pinhole size (cont')

#### Geometric error:

$$Wg_{FWHM} = a (D+d)/D$$

#### Diffraction error:

Wdiff 
$$_{\text{FWHM}} = 1.10 \ 10^{-6} \ d/(a*E)$$

- a pinhole width
- d distance from source point to pinhole
- D distance from pinhole to screen
- E photon energy in eV unit

#### Different curve corresponding to different filters



#### SRW PSF simulation





### 'Polychromatic' Diffraction

#### Sands-121



#### spectrum at screen



C. Limborg - SSRL

FIG. 42--Normalized power spectrum S and photon number spectrum F of synchrotron radiation.

Integrate intensity pattern over photon spectrum



### **PSF Calculation**

Putting it all together... fresnel.m valid from geometric to diffraction regimes

A<sub>y</sub>=5 micron (diffraction)



A<sub>y</sub>=40 micron (optimum)



A<sub>y</sub>=250 micron (geometric)



J. Bergstrom - CLS

SRW, SPECTRA etc. can do the similar job



### Phosphor screen error

Table 1: Width of the PSF (r.m.s) of the X-ray camera with several screens (in  $\mu$ m). The error is given by the standard deviation of the fitted width per line on the digital image.

| Thickness (µm) | P43            | $CdWO_4$        | LuAG            |
|----------------|----------------|-----------------|-----------------|
| 5              | $6.2 \pm 0.39$ | -               | -               |
| 100            | -              | $7.45 \pm 0.45$ | -               |
| 200            | -              | $8.45 \pm 0.45$ | $8.70 \pm 0.45$ |
| 400            | -              | -               | $10.0 \pm 0.45$ |
| 500            | -              | $13.5 \pm 0.45$ | -               |

#### Diamond, screens compare

To select the screen:

- Spatial resolution
- Time response (decay time,

70ns for YAG:Ce)

- Photon yield of the screen
- Emission wavelength
- Radiation damage etc.







### CCD error

#### CCD – Charge Coupled Device



Finite pixel size (Flea2, 4.65 x 4.65µm pixel size) Spilling to neighbors due to spilled charge or scattered radiation

$$\sigma_{ccd} \approx 0.3 + spill \_fraction, [pixels]$$

Screen and CCD errors are negligible if the pinhole magnification factor is large



### Summary

- Pinhole cameras effective in the x-ray regime (~5μm resolution)
- System construction fairly straight-forward
- Power loading considerations
- Optimize aperture size
- Data analysis relies on comparison of model with measurement fresnel.m
- Relative high exposure time due to small aperture (fast measurement needed for injection transient and machine physics)