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Particle physicist usually assume =c=1, in this context (next 

5 pages only).

To compute the collision energy between particles, let’s 

define a new entity: the particle energy E and the classical 3-

momentum p form a (Jargon point!) “4-momentum tensor”:

ˆ ( , )p E p

Center of mass energy in a collision
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The scalar product between two particles momenta is defined 

as:

And it is an “invariant” (reference frame independent). 

Thus note that, since                                  

where (=c=1!), then the product of the four-vector by itself is:

22 2ˆ ˆp p E m   p

   
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ˆ ˆp p E E
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p p

2 22 2 4 2
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Center of mass energy in a collision
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In a particle collision, the quantity:

is a Lorentz-invariant. The center-of-mass energy available for 

physics experiments is: 

cm
E s

2

21
)ˆˆ( pps 

Center of mass energy in a collision
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Also:

Where the relativistic b = p/E and q is the collision angle (and  

q0 represents an head-on particle collision). Remember: c =1. 
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Center of mass energy in a collision
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Check point

In a linear collider with p1= - p2 the c.m. energy is … 

Note: due to “beamstrahlung” and “crossing angle” (see later), 

generally the center of mass energy is lower ….

Ecm < 2 E 

Thus, the collision is not a “clean monochromatic” process but there 

are spurious effects that lower the collision energy and introduce an 

energy spread. This results in a “luminosity spectrum dilution”

2

1 2
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E E E 

Center of mass energy in a collision
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Why is the Luminosity the most important parameter* in the 

design of a particle collider? (*with the Energy) 

During particles collision, for sufficiently high energy, several 

fundamental physics processes occur.

The event rate of a specific process is given as 

“Br” is the branching ratio, e detection efficiency. The cross 

section s is a fixed number dependent on the specific physics 

process only, while the Luminosity “L” is controlled by the beam 

parameters of the collider. 

Luminosity

1 2 1 2
(sec ) ( sec ) ( )  ev

ev

dN
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s e
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Generally, the luminosity is defined as:

where N is the number of particle per bunch, A is the transverse 

area collision area, nb is the number of bunches in a train and f is the 

collider frequency.

For transverse Gaussian beam distributions

where we have introduced HD, an enhancement factor due to the 

“pinching” of particles when they cross the field of the opposite 

bunch [see later].

Luminosity
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LC parameters

Parameter ILC 500 GeV ILC 1TeV CLIC 3TeV

E beam [GeV] 250 500 1500

gex / gey [10-6 m] 10 / 0.04 10 / 0.04 0.66 / 0.02

N  [1010] 2 2 0.372

sx / sy [nm] 655 / 5.7 554 / 3.5 45 / 1

sz [um] 300 300 44

Nb bunches 2820 2820 312

bs [ns] 307.7 307.7 0.5

f   [Hz] 5 4 50

qc [mrad] 14 14 20

L  [1034 cm-2s-1] 2.0 2.0 5.9
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Comparison of beam-beam effects in 

Ring Colliders and Linear Colliders
Beam-beam effects are dramatically different in linear colliders and 

storage rings In Ring Colliders

Beams are re-used

Single collisions are “gentle” and 

multiple turns are important 

resonances

Luminosity is made with large f, 

and large collision area

Wealth of experimental experience

2

4
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Comparison of beam-beam effects in 

Ring Colliders and Linear Colliders
Beam-beam effects are dramatically different in linear colliders and 

storage rings In linear colliders

Used only once

Single collisions are “violent”

Drastic bunch deformation during 

collision

Luminosity is made with small f, 

and small collision area

Limited experimental experience

2

4
x y

N
L f

s s
 Check: what is this f in a LC 

depend on? Why it is smaller and 

different than storage rings?
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Beam-beam in Storage Rings

Let’s build the one-turn linear transfer map combination of the 

linear optics and the effect of beam-beam at IP. 

For a (vertical) tune Qy, and by at IP the one-turn transfer map for 

the vertical coordinates is given by: 

The (vertical) beam-beam kick of strength d can be represented by 

a quadrupole-like kick:
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Beam-beam in Storage Rings

Thus, the (vertical) one-turn matrix with the beam-beam kick is:

Where we have assumed that the new tune is a small perturbation 

(Qy + xy ). Now, we take the Trace of the turn map to extract the 

new perturbed  tune:
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Where the so called incoherent “beam-beam” tune shift xy « 1 is

Assuming sy « sx a Ring collider luminosity is proportional to the 

beam-beam tune shift

Where typically:
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Beam-beam in Storage Rings
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In Linear Colliders, to get the maximum luminosity out of the collision 

one needs small nanometer beam sizes.

When the beams are small, the particle densities are very high.

Also, the strong beam demagnification at the IP to obtain nanometer 

beam sizes requires a very strong focusing (high magnetic fields) by 

the final doublet quadrupoles.
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Beam-beam effects in Linear Colliders:

the Good, the Bad and the Ugly

**

2

yx

N
L

ss




16

Beam-beam effects in Linear Colliders:

the Good, the Bad and the Ugly



High beam densities lead to the following good or bad beam-beam 

effects:

• GOOD: Strong pinching effect of the bunches enhance luminosity

• BAD:  Instability effects sets tight collision tolerances at IP

• BAD:  high beamstrahlung radiation with luminosity spectrum dilution

• UGLY: pairs production, e+ e- generated by the radiation propagating 

in the strong field of the bunches are source of Detector Background

17

Beam-beam effects in Linear Colliders:

the Good, the Bad and the Ugly
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Beam-beam effects in linear Colliders:

the Good, the Bad and the Ugly
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Reminder: Gauss’ Law

The total of the electric flux out of a closed surface is equal to 

the charge enclosed divided by the permittivity.

The electric flux through an area is defined as 

the electric field multiplied by the area of the 

surface projected in a plane perpendicular to 

the field. 

For geometries of sufficient symmetry, it 

simplifies the calculation of the electric field. 
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Example: Electric Field of a infinite 

cylinder of charge

Let’s compute the electric field of an infinite cylinder of uniform 

volume charge density and radius R. Use Gauss’ law. This example 

will be useful later to compute the electric field for a beam of particles. 

First: Consider a surface in the form of a 

cylinder at radius r > R, the electric field is 

directed outward. The electric flux is then 

just the electric field times the area of the 

cylinder. Then: do the same for r < R.

Exercise (1): 

prove this

…plot E for    

r[-10R,10R] 

(assume  

l=1e-9 C/m)
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Electric and Magnetic fields in a beam

First we compute the Electric field E.

To compute the Electric field of a relativistic beam, we consider three 

cases for the transverse beam charge distribution:

– Round Gaussian beam

– Flat Gaussian beam (exact)

– Flat Gaussian beam (approximation)
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Electric and Magnetic Field for a 

Round Gaussian beam

The beam-beam interaction is a purely Coulomb interaction of 

particles in the electric and magnetic field of the opposite bunch. 

Let’s have a closer look at the electric and magnetic field of a 

relativistic bunch and, to simplify the description, with a Round sx=sy 

beam size and a Gaussian charge distribution in the transverse 

direction:

Let’s apply Gauss’ law to compute the field at a distance r from the 

bunch axis, assume a bunch of length L

Gauss’ law  


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Electric Field for a Round Gaussian beam

The electric charge contained in the bunch at a radial distance r  is obtained 

by integrating the charge distribution: 

We use Gauss’ Law  to obtain the Electric field E at the radial distance r

which contains the electric charge Q
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Finally from the previous equation, the electric field is:

This is the electric field in the                                                              

radial direction and at a distance r
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Electric Field for a Round Gaussian beam

Electric field of a bunch with Gaussian 

charge distribution (radial distance in 

units of transverse beam size)
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Electric and Magnetic Field for a 

round Gaussian beam

Similarly, we compute the magnetic field B by applying the Ampere’s 

law

Ampere’s law 
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Force and angular kick            

round Gaussian beam

The Lorentz force experienced by a particle of charge –e (electron) 

when travelling in the –ŝ direction through the opposite (positron) 

bunch is

where we have used the relations

This force is for round Gaussian distribution only. 

[Exercise (2). Can you show this? For particles in the same bunch: 

the electric and magnetic fields “tend to” cancel each others (!) and 

the force scale as g-2 … so that the total force is negligible.]
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Angular kick during collision

(Round Gaussian beam)
Force is computed for a longitudinal bunch of length L. The 

transverse angular kick is obtained by integrating over the bunch 

length and considering that the relative speed of the two beams is 2c

or

the angular kick 

in the vertical direction
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Electric and Magnetic fields in a beam

First we compute the Electric field E.

To compute the Electric field of a relativistic beam, we consider three 

cases for the transverse beam charge distribution:

– Round Gaussian beam

– Flat Gaussian beam (exact)

– Flat Gaussian beam (approximation)
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Electric field for a relativistic flat beam 

(exact)

The electric field can be computed exact with Gauss law in a closed 

form, for example Basetti-Erskine formula with sx > sy :

where                               and W the complex error function                                 
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Electric field for a relativistic flat beam 

(use approximation)

• Flat beam sx  sy

• Assume

• infinitely wide beam with constant density per 

unit length in x:

• Gaussian charge distribution in y:
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Electric Field from a Relativistic Flat Beam
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Electric field for a relativistic flat beam

peak field ~40 GV/cm!

2xEy plotted at peak of 

longitudinal density z=0

exactapprox. 

a set of parameters for



33

Electric field for a relativistic flat beam

exact
approx. 

peak fields        

ILC ≤ CLIC / 10

Check point

2xEy plotted at peak of 

longitudinal density z=0
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Linear approximation and Disruption

Fields near axis are linear. Then,

again, consider the angular 

kick for a round beam

taking the linear field approximation, for a 

particle near the axis of the opposite beam

In the more general case of a Gaussian transverse beam distribution 

near the axis the beam kick results in the final particle angle:
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Linear approximation and Disruption

The bunch behaves like a focusing lens for a particle traveling in the 

opposite direction and is equivalent to a lens with focal lengths

if “lens” is strong as in linear colliders, both particle slope r' and 

position r change during bunch passage
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Disruption limits

• A small disruption D < 1 means that the

incoming beam is acting as a thin lens

• When fields are strong, disruption D >> 1 and particles oscillate while 

passing through other beam potential. Notion breaks down D -sz/f

• Calculation of disruption effects is done with computer simulations

• If D is too big, an instability may take place that significantly reduces 

luminosity in the presence of small beam beam offsets

n number of plasma 

oscillations  

In the context of the linear colliders, the relative change in the 

transverse position is defined as the disruption parameter
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Disruption angle

The disruption angle is characterized by nominal deflecting angle

The maximum and rms disruption angles obtained from computer 

simulations scaling laws for flat beams and in the limit
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One of the most important success of the Stanford Linear Collider 

SLC is the use of the beam-beam deflections as a tool for steering 

the micron beam-size beams into collision, for maintaining collision 

and for monitoring and tuning the transverse beam size at the IP and 

beams overlap.

Beam-beam deflections
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Beam-beam simulations (with guinea-pig)

Note on units in acc.dat: 

$ACCELERATOR:: YOURLC1

{ energy     = 500 ;   GeV

particles  = 0.75 ;  e10

sigma_x    = 250 ;   nm

sigma_y    = 2.0 ;   nm 

sigma_z    = 100 ;   micron

beta_x     = 5.0 ;    mm

beta_y     = 0.2 ;   mm

offset_x   = 0 ;     nm (total offset will be 2*offset_x)

offset_y   = 0 ;     nm (-//-)

}

Analysing the results

Look for these useful numbers in the output file  gp.out: 

lumi_fine -- luminosity [1/m^2]                                                                                              

E_cm  and  E_cm_var -- CM energy and energy spread due to beamstrahlung [GeV]

bpm_vx, bpm_vy  -- average angular beam deflection after collision [microrad]

upsmax  -- max value of Upsilon parameter
to extract luminosity spectrum from gp.out run: 

gpv.exe gp.out lumi_ee

Example of output is in  gp.out  and luminosity 

spectrum is shown in lumi_ee.dat
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Simulations (with guinea-pig)

Selected

D. Shulte, 19-27 May 2006, Sokendai, Hayama, Japan
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BEAM-BEAM 

SIMULATIONS
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Beam-beam effects
HD and instability yx
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Beam-beam effects
HD and instability

LC parameters
Dy~12

Luminosity 
enhancement 
HD ~ 1.4

Not much of an 
instability

fodo_anime_3.gif
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Beam-beam effects
HD and instability

Nx2
Dy~24

Beam-beam  
instability is 
clearly 
pronounced

Luminosity 
enhancement is 
compromised by 
higher 
sensitivity to 
initial offsets

fodo_anime_3.gif
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Beam-beam deflection

Sub nm offsets at IP cause large well detectable offsets 
(micron scale) of the beam a few meters downstream  
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Beam-beam deflection

allow to control collisions

fodo_anime_3.gif
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Beam-beam collisions calculated by 

Guinea-Pig [D. Schulte]

zxy.gif
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Beam-beam: Travelling focus

• Suggested by V.Balakin – idea is to use beam-

beam forces for additional focusing of the beam –

allows some gain of luminosity or overcome 

somewhat the hour-glass effect

• Figure shows simulation of traveling focus. The 

arrows show the position of the focus point during 

collision
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END OF FIRST 

BEAM BEAM 

LECTURE
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Pinch and Luminosity enhancement

During collision, the bunches focus each other (self-focusing or 

pinching) leading to an increase in luminosity

Luminosity enhancement factor

very few analytical results on this parameter. Insight gained with 

extensive simulations. 
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Hour-glass term

Fit to simulation results for head-on collision
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Hour-Glass effect

different vertical b* values 
Transverse beam sizes 

cannot be considered 

constant but vary with b
near IP. Beta has quadratic 

dependence with distance s

Beam sizes                     

vary linearly with s at IP

 

2

*

*
1

s
sb b

b

  
       

 important when by sz since not all particles collide at minimum 

of transverse beam size  reducing luminosity.   

 “hour-glass” effect from shape of b

Rule: sz ≤ by

( ) ( )
y y y
s ss b e 

Note: negative beta just plot to 

show the “hour glass” shape
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The Luminosity Issue: Hour-Glass

b = “depth of focus”

reasonable lower limit for 

b is bunch length sz
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N. Walker, USPAS Santa Barbara, CA 2003
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Luminosity as a function of by

200 400 600 800 1000

1 1034

2 1034

3 10
34

4 1034

5 10
34

300z ms 

100z ms 

500 m

700 m

900 m

( )y mb 

2 1( )L cm s 

2

4
b

x y

n N f
L

s s


1
BS z

d s



54

Luminosity with beam offset and 

pinch enhancement

2

2
exp

2s

 
 

 
 y

y

Beam-beam simulations

K. Yokoya, P. Chen
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Luminosity and disruption

results simulations:

Luminosity with D and y/sy. Note at large D >10, tiny offsets 
degrade sensibly the luminosity. Typically HD ~2 for linear colliders.

K. Yokoya, P. Chen

1 2  
4

b D

x y

N N
L n f H
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Quantum Beamstrahlung

Particles accelerated transversely by the magnetic field of the 

opposite bunch. In linear colliders:

• Magnetic fields reach kilo-Tesla!

• Longitudinal extent of the field is short sz~10-4, but emitted SR plays 

crucial role in linear colliders

“Beamstrahlung” physics effects

• Spread in collision energy of e+e-
 Luminosity spectrum dilution

• Radiation interacts with beam fields to produce background e+e- and  

+- pairs 

1 beneficial effect  Beamstrahlung used for diagnostics to keep  

beams in collision

Exercise (3): 

compute Bmax for CLIC beam
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Beamstrahlung diagnostics 

First observed at SLC and used

as a tool to optimize luminosity.

Changed vertical beam offset 

and measured beamstrahlung 

photons downstream. 

Maximum photon flux when

y ~ sy

(max opposite bunch fields)

Beamstrahlung not proportional to luminosity.
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Emission radiation picture

Opening cone angle is approximately 

Observer sees radiation emitted for a radiation length 

Critical energy defined at half power spectrum (A. Seryi lecture)
3
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beamstrahlung

Beamstrahlung is fully characterized by the parameter

Bc Shwinger critical field

For Gaussian beams the  average and maximum is computed

In linear colliders ~0.1 to  1, meaning that emitted photon energy 

is comparable or may exceed initial electron energy: recoil of 

electrons, quantum nature and breakdown of “classical” synchrotron 

radiation spectrum.
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power spectrum

Beamstrahlung radiation formula for arbitrary  was first derived by 

Sokolov-Ternov by using Dirac equation in a uniform magnetic field 

and computing the transition rates. The photon emission spectrum is 
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In the limit 0 the spectrum 
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formula. The high energy part 

is truncated at beam energy.
log log plot

with
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Luminosity and beamstrahlung

Beamstrahlung emission characteristic parameters:

approx. number of emitted photons 

and the relative beam 

particles energy loss

where                                        and
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beamstrahlung parameters

U1 ~ constant over wide range 0.1<<100. Thus, to keep dBS < 10% 

most linear collider designs choose sz/leg  1;  ng is also ~unity.
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Luminosity and beamstrahlung
Beamstrahlung causes a spread in the center of mass energy of e- e+. 

This effect is characterized by the parameter dBS. Although dBS < 1% 

for the SLC, it can be a severe limiting factor for the performances of 

any future linear collider. Limiting the beamstrahlung emission is of 

great concern for the design of the interaction region:

Flat beams

Beamstrahlung parameters depend on the                                        

inverse sum while Luminosity depend on                                            

the product of beam sizes 

low energy regime 0

also re-call

Most practical cure is to produce very flat beams R= sx/sy  large, by 

increasing sx and squizing sy to scale dBS 1/sx
2 and   1/sx without 

sacrificing Luminosity  1/(sxsy). R = 85 CLIC and R = 115 ILC. 
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Luminosity spectrum

Peaked at nominal

c.m. energy but

long low energy tail

INPUT  EXAMPLE 

energy     = 1500 GeV; 

particles  = 0.256 e10

sigma_x    = 60 nm

sigma_y    = 0.7 nm

sigma_z    = 30.8 um

beta_x     = 16.0 mm

beta_y     = 0.07 mm

OUTPUT: 

max=9.68447;

dE=17%
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Crossing angle

To avoid unwanted parassitic collisions between closely spaced 

bunches, a crossing angle is used in either LCs. The luminosity 

overlap integral gives an additional purely geometrical factor S

for small f and sz » sx the reduction factor is

typically, LC crossing angles f 0-20 mrad.   

1 2

4

b

x y

N N n f
L S

s s
 

2 2

1 1

1 ( / tan( / 2)) 1 ( / tan( / 2))
x z z x

S
s s f s s f



   

1 / 2

2
1 ( )

2

z

x

S
s f

s



 
   

 



66

Crossing angle and offset

If small transverse offsets     

are also considered

where S is the crossing angle reduction factor, W is the reduction 

factor in presence of beam offsets and exp[B2/A] in presence of both 

angle and offset, and
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Crab crossing

Advantage of crossing angle is that allows many closely spaced 

bunches and make extraction of the beam easier. Disadvantage is a 

reduced luminosity and the fact that particles in a bunch experience 

different forces, since they pass the opposite bunch at different times.

Crab crossing is obtained with a rotation or “tilt” in the z-x planes by 

means of an upstream “crab cavity”, to allow head-on collision 

and fully restore luminosity. Crab cavity R&D is ongoing for the LC.
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Pair production

Production of e+e- pairs (see N. Mokhov lectures) is source of 

detector background: 

Incoherent process  beamstrahlung “real” photons interact with 
oncoming electrons or positrons. Incoherent 
processes occur at low energies. 

Coherent process    photons propagating through the transverse 
electromagnetic field of the oncoming beam 
has a probability of turning into e+e- pairs. 
Contributed either by real or virtual photons. 
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Pair Production

• Incoherent e+e pairs <0.6

– Breit-Wheeler:

– Bethe-Heitler:

– Landau-Lifshitz:

• Coherent e+e pairs 0.6<<100

– threshold defined by
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for intermediate colliders (Ecm<1TeV), 
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N. Walker, USPAS Santa Barbara, CA 2003
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Pair Production
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Many of these slides are based on previous contributions to 

the field of beam-beam and beam delivery system

In particular, Thanks to:

N. Walker, D. Shulte, A. Seryi, K. Yokoya, P. Chen, K. Brown 

and to many other colleagues …
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Supplemental material

Feedback (keeping beam in collision)

Kink instability

Beam Beam Kick

Long Range Kink

banana beam

spent beam and exit angle

luminosity monitoring
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1TeV

beam delivered

Nikolai Mokhov – Mauro Pivi – Andrei Seryi

e-e+ e- e-e+e+


