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Goals for this Lecture 

1.  Derive the transverse equation of motion for a 
particle. 

2.  Solve the equation of motion and represent the 
solution in matrix form. 

3.  Use the solution to transport a single particle through 
many lattice elements. 

4.  Parameterize a distribution of particles and transport 
those parameters. 
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Phase Space and Units 

In transverse particle dynamics, we are concerned with the effect of 
external magnetic fields on the phase space coordinates of a particle or 
beam. We call the phase space coordinates (u, u’), where (u, u’) can be 
either (x, x’) or (y, y’). 

Coordinates and units: 

position [meters] 

transverse 
momentum [radians] 

transverse 
acceleration [m-1] 

u’ 

u 
What does the phase space path of a harmonic oscillator look like? (Mass 
on a pendulum, child on a swing, etc)? 

Particle with positive 
position and 
momentum. 

distance along reference trajectory, [m], 
(“time” coordinate) 
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Motion about the Reference Trajectory 

The first thing to do in describing an accelerator is to define a reference 
orbit. Only the ideal particle actually follows the reference orbit. All other 
particles will follow trajectories about the reference orbit. 
What we really need is an equation which governs a particle’s deviation 
from the reference trajectory.   

φo 

φ 
ρo 

ρ 

ds 

dσ 

x 

The idea is to subtract the 
reference from the actual 
trajectory, and then make the 
desired approximation by 
discarding all terms of higher 
order than those of interest. 
We’ll study linear terms here.  

This gives us equations for x” 
and y”, which are the equations 
of motion about the reference 
trajectory. 
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Derivation of Transverse Equations of Motion - 1 

There are several ways to derive the transverse equations of motion. A particularly elegant  
method involves Hamiltonian dynamics, but is beyond the present scope. Here, we will make  
some ordering approximations and then substitute into the Lorentz force equation: 

  

€ 

d p 
dt

= e( v ×
 
B )

Assumptions: 
 Orthogonal right hand coordinate system (x,y,s) where 
  s is the distance along the reference particle orbit, 
  x is “horizontal” coordinate in direction of reference orbit curvature, and 
  y is “vertical” coordinate perpendicular to s and x. 
  ρ is the bending radius 

  

€ 

1
ρB0

=
e
p0

 r = (ρ + x) ˆ x + yˆ y =  r 0 + xˆ x + yˆ y 
 p = (p0 +δp)ˆ s + px ˆ x + py ˆ y = γm(vˆ s + dx

dt
ˆ x + dy

dt
ˆ y ) = γm v = γm d r 

dt
d
dt

=
ds
dt

d
ds

=
v

(1+
x
ρ

)

d
ds

 ,     dˆ s 
ds

= −
ˆ x 
ρ

 ,    dˆ x 
ds

=
ˆ s 
ρ

 ,     dˆ y 
ds

= 0

 
B = B0 ˆ y +δ

 
B = B0 ˆ y +δBx ˆ x +δBy ˆ y +δBsˆ s 
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Derivation of Transverse Equations of Motion - 2 

Ordering: Assume 

€ 

   x << ρ             y << ρ

  px << p0         py << p0      δp << p0

δBx << B0      δBy << B0     δBs << B0

Now plug into Lorentz force equation, do algebra, and get: 

€ 

ʹ′ ʹ′ x =
ʹ′ x 2

ρ(1+
x
ρ
)

+
1+

x
ρ

1+
δp
p0

{−[ x
ρ2

+ (1+
x
ρ
)
δBy

ρB0

]+ ʹ′ y δBs

ρB0

+
1
ρ
δp
p0
}

ʹ′ ʹ′ y =
ʹ′ x ʹ′ y 

ρ(1+
x
ρ
)

+
1+

x
ρ

1+
δp
p0

{(1+
x
ρ
) δBx

ρB0

− ʹ′ x δBs

ρB0

}

Potential V(x,y) for Bx and By: 

  

€ 

V (x, y) = −ρB0{( 1
ρ

+
δB0y

ρB0

)y +
δB0x

ρB0

x + Kn xy + Ks
x 2 − y 2

2
+…

 
B = −∇V + δBs = B0 ˆ y + δ

 
B = ρB0{ ˆ x (δB0x

ρB0

+ Kn y + Ksx +…) + ˆ y ( 1
ρ

+
δB0y

ρB0

+ Kn x −Ksy +…) +
δBs

ρB0

}
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Derivation of Transverse Equations of Motion - 3 

We plug in B to get: 

  

€ 

ʹ′ ʹ′ x =
1

1+
δp
p0

{−
δBy0

ρB0

+
1
ρ
δp
p0
− [ 1
ρ2

+ Kn +
2
ρ

δBy0

ρB0

−
1
ρ2

δp
p0
]x + Ksy + ʹ′ y δBs

ρB0

+…}

ʹ′ ʹ′ y =
1

1+
δp
p0

{δBx0

ρB0

+ Kn y + (Ks +
2
ρ
δBx0

ρB0

)x − ʹ′ x δBs

ρB0

+…}

  

€ 

In the algebra (not shown), the reference orbit terms cancelled out due to 1
ρB0

=
e
cp0

. This

happens in the x - equation. The "zoo" of terms are interpreted as follows :

Kn and 1
ρ2  terms -  focusing from normal quadrupoles and from dipoles, respectively.

δB(x,y )0

ρB0

 and Ks terms -  skew and normal dipole errors and skew quad linear coupling, respectively. IGNORE HERE!

δBs term -  solenoid or small error field or fringe field. IGNORE HERE!
1
ρ
δp
p0

 term -  dispersion. Will discuss next week. IGNORE HERE!

Other δp
p0

 terms -  chromatic effects. IGNORE HERE!

…  terms -  nonlinear fields (sextupoles, octupoles, etc.) IGNORE HERE!

Comments: 
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Linear Equations of Motion - Summary 
Finally (!), after discarding solenoidal, skew, and nonlinear terms, and 
assuming an on-energy beam, the equations of motion about the 
reference trajectory are:  

€ 

x"+ κ 2 + k( )x = 0
y"−k(s)y = 0

€ 

κ =
1
ρ

=
e
p0
B0  dipole focusing strength 

k =
e
p0

dBy

dx
   quadrupole focusing strength

(Weidemann 4.2a, 4.2b) 

Note that the dipole term here is second order and provides a 
geometric dipole focusing term caused by certain dipole magnets.  The 
first order dipole term was built into the reference trajectory. 
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Linear Equation of Motion 

These are known as Hill’s (homogeneous) Equations of Motion, more 
succinctly written as:  

€ 

x"+Kx (s)x = 0
y"+Ky (s)y = 0

€ 

Kx (s) =
1
ρ2
(s) + k(s)

Ky (s) = −k(s)

where we have defined…  
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A Closer Look at Hill’s Equation 
What does it tell us? Look at the general form.  

  Particle motion about the reference trajectory is caused by normal dipoles 
and quadrupoles, whose strength varies with s. 

   If k and ρ are constant and focusing with s (or vary slowly), the motion is 
harmonic. Therefore we won’t be surprised later to find that the motion has a 
“frequency”… The total motion, with s-dependence, is “quasi-harmonic”. 

  The equation acts like a spring with “spring constant” or restoring force, K
(s).  But K(s) changes over the distance of the accelerator. 

u 
u 

(Weidemann 2.65) 
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Peicewise Constant Approximation 

The s-dependence of K(s) complicates the solution to the equation. To 
make life a little easier, lets consider a single piece of the accelerator 
having constant K. In doing so, we are making a “piecewise constant” 
approximation. 

K(s) ≅ K 

This is a good approximation 
as long as we select small 
enough pieces (<= 1 lattice 
element) 

Hill’s equation becomes: 
And this is a problem we 
know how to solve! 
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Solving Hill’s Equation 

Solve the piece-wise constant Hill’s equation with appropriate initial 
conditions: 

Solve:  with initial conditions:  

The solution is:  

K<0: K>0: 

(**Derivation**) 
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Quick Review of Matrix Multiplication 
Suppose we multiply two matrices, M1 and M2. The (row m, column n) 
element of the final matrix is the vector dot product of the m row from M1 and 
the n column from m2: 

Mn,m=(row n from M1) x (column m from M2) 
Example: M11=(row 1 from M1) x (column 1 from M2) 

    M21=(row 2 from M1) x (column 1 from M2) 

In general, matrix multiplication is not commutative: M1 x M2 ≠ M2 x M1. 
The order of multiplication is very important! 
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Matrix Representation of Motion 

€ 

u'(s) = C'(s)uo + S'(s)u0 '

First take derivative:   

M 

(uo, u’o) 
(u, u’) 

reference trajectory 

Then we can write the transport equation as a matrix:   

M 
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Transport Through a Drift 

In a drift space, there is no change in the momentum of the particle. We 
take the limit of M as K-> 0. 

0 l 

x' 

x 

x' 
0→L 

s 

Real space (s,x) Phase space (x, x’) 
x 
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Transport Through a Quadrupole 

€ 

MQF =
cos( Kn l)

1
Kn

sin( Kn l)

− Kn sin( Kn l) cos( Kn l)

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

€ 

MQD =
cosh( Kn l)

1
Kn

sinh( Kn l)

Kn sinh( Kn l) cosh( Kn l)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

€ 

K = Kn +
1
ρ2

ρ=∞⎯ → ⎯ ⎯ Kn

In the case of a quadrupole, there is no bending, so the only remaining term 
is the quad strength term.  

Focusing: 

Defocusing: 
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Finite Length Quad Transport. 

0 L s 

Now consider again the quadrupole with finite length, L. 
The angle is changed through the length, and the 
position as well. For instance, for K>0:  

x' 

x 

Real space (s, x): Phase space (x,x’): € 

x
x '
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ =

cos( Kn l)
1
Kn

sin( Kn l)

− Kn sin( Kn l) cos( Kn l)

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

xo
x0 '
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

(**Examples**) 
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Thin Lens Approximation for a Quadrupole 

0 f 

x' 

x 

x' 

x 

0 f 

In the “thin lens approximation”, we let the length of the quadrupole approach zero 
while holding the focal length constant: L→0 as 1/f=KL=constant. 

Real space (s, x): Phase space (x, x’): 
In this approximation, the position remains fixed, but the momentum changes: 

Focusing: 
(slope decreases) 

Defocusing: 
(slope increases) 

(**Derivation/Example**) 
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Example of transport through Quad 

Example: For a quad with L=0.1m, (Bρ)=5 Tm, and dBy/dx=3 T/m, 
calculate the transport matrix for: 

 (a) Thin lens approximation. 
 (b) Full thick lens treatment. 

€ 

K = ±
1
ρB

dBy

dx
= ±

3
5
m−2

L = 0.1m

f =
1
KL

=16.667m

€ 

MF =
cos( KL) sin( KL)

K
− K sin( KL) cos( KL)

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

€ 

MD =
cosh( KL) sinh( KL)

K
K sinh( KL) cosh( KL)

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ € 

MF =
1 0
−
1
f

1
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

€ 

MD =
1 0
1
f

1
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
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Focusing in a Sector Dipole 

The axis of a sector dipole usually corresponds to the reference trajectory. 
In the plane of the bend, off-axis particles are focused by the dipole, as 
seen in the 1/ρ2 contribution to K in Hill’s equation: K=k+1/ρ2 

θ 

L 

A particle on an exterior 
path w.r.t. reference 
undergoes more bending.   

A particle on an interior 
path w.r.t. reference 
undergoes less bending. 
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Transport in Pure Dipole Sector Magnet  

€ 

Mx,sector =
cos(θ) ρo sin(θ)

−κo sin(θ) cos(θ )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

θ =κol,    κo =
1
ρo

In a pure sector dipole, we take the quad strength k, to be zero, k=0. In 
the deflecting plane, i.e, the plane of the bend (usually horizontal), we 
have:  

And in the non-deflecting plane, ρ→0, and we are left with a drift: 

(Weidemann 4.41) 
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Transport in Rectangular Dipoles 

In a rectangular dipole, the particle path in the horizontal direction is the same 
for all trajectories, so there is no focusing in the horizontal direction. 

In the horizontal direction the magnet transforms like a drift with length 
equal to the path length ρ sinθ.   

θ 
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Piecewise Constant Transport: Two Elements 

The matrix representation is very convenient. For instance, what if we had 
two consecutive elements, with strengths K1 and K2? What is the final 
equation of transport for a particle through both elements? 

M1 

(uo, u’o) (u1, 
u1’) reference trajectory 

M2 (u2, u2’) 

The solution for the first element becomes the initial condition for the 
second element… 

, then,  First,  

And finally, we have 
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Piecewise Constant Transport: n Elements 

from s0 to s1 

from s0 to s2 

from s0 to s3 

from s0 to sn 

… 
S0 

S1 S2 S3 Sn-1 

Sn 

For an arbitrary number of transport elements, each with a 
constant, but different, Kn, we have: 

Thus by breaking up the parameter K(s) into piecewise constant chunks, 
K(s)={K1, K2, … Kn}, we have found a useful method for finding the 
particle transport equation through a long section of beamline with many 
elements. 
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Example: A Quadrupole Focusing Doublet  

Let’s consider quadrupole doublet sequence  separated by a drift L, in 
the thin lens approximation:  

Answer: 

Why don’t we use sequences of …FOFOFOFO… magnets to create 
lattices in an accelerator? 

is the total focal length of the system. 

(**Derivation/Examples**) 

s 
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Example: FODO Channel 
•  Consider a defocusing quadrupole 

“sandwiched” by two focusing quadrupoles 
with focal lengths f. 

•  Note: Wiedemann’s f is for half quad. I use f 
for full quad: f=fW/2. 

•  The symmetric transfer matrix is taken from 
center to center of focusing quads (thus one 
full focusing quad and one full defocusing 
quad) L L 

This arrangement is 
very common in beam 
transport lines. 
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Example: FODO Channel 

This arrangement is 
very common in beam 
transport lines. 

The general expression for a FODO lattice with focal lengths f1 and f2, 
separated by a distance L is: 

And the special case where f1=-f2=f is: 

with, 
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Stability Condition 

Most of the time we deal with lattices where the arrangements of 
magnets repeats, i.e., periodic systems.   

Q: How do we know if our lattice produces stable particle motion? 
A: After finding the composite transport matrix, M, of the lattice, we 
determine the “stability condition” for the matrix:  

If: 

Stability condition: 

Where “Tr(M)” means the “Trace” of the matrix, which is the sum of the 
diagonal elements.  And for N repetitions of this lattice sequence, we 
generalize to: 

What is the stability 
condition for a FODO 
lattice? 
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Stability Condition for a FODO Lattice (f2=-f1)  
The stability condition for a FODO lattice is found by taking the trace 
and applying the stability condition.  So, for the thin lens approximation 
of a FODO cell with equal focal length quadrupoles: 

For a thin lens FODO lattice, the 
distance between magnets should 
be less than twice the focal 
length. 

Transfer matrix: 

Stability condition:  

Result for FODO:        
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Stability Condition for a FODO Lattice (general)  
For the general FODO cell with unequal focal lengths, the condition is 
more complicated.  We have: 

The allowed magnitudes 
are given by the “Necktie 
Diagram” 
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The Problem of Real Beam Distributions 

So far we have learned how to write the transport equations for a single 
particle in a beamline. 

The problem: In a real machine, we rarely have any information about a 
single particle! 

We do have information about the entire beam, i.e, the ensemble of all 
of the particles. We could solve separate transport equations for each 
particle in the bunch (PIC simulations do something like this)... Very 
impractical for analytic work! 

Solution:  
We parameterize the entire particle distribution, and write the transport 
equations for the parameters. Thus we can write transport equations for 
the whole beam, not just one particle! 
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Twiss Parameters 

A good approximation for the beam 
shape in phase space is an ellipse. 
Any ellipse can be defined by 
specifying: 
  Area 
  Shape 
  Orientation 

We choose 4 parameters –  
3 independent, 1 dependent: 

α - related to beam tilt 
β  - related to beam shape and size 
ε  - related to beam size 
γ  - dependent on α and β. 

These are the “Twiss Parameters” (or 
“Courant-Snyder Parameters”) 

u’ 

u 

Beam Ellipse in Phase Space: 
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Transverse Beam “Emittance” 
The equation for the beam ellipse, 
with our Twiss parameterization can 
be written as: 

u’ 

u 

Beam Ellipse in Phase Space: 

And the ellipse has area:  

The beam emittance is the phase space 
area of the beam (to within π). Emittance 
is a parameter used to gauge beam 
quality.  

(Weidemann 5.18, 5.19) 



34 

Real Beam Distributions 

In reality, real beam distributions are not uniform in phase space and, in 
practice, it can be difficult to locate the beam edge.   

“KV” “Waterbag” Gaussian 
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RMS Quantities 

Most often, we will deal with RMS quantities.  The RMS size of a beam with 
N particles is defined as: 

And the RMS momentum spread, is: 

For most common distributions, the RMS is some fraction of the total beam 
size. For example, for a KV distribution, the RMS beam size is half the total 
beam size. 
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RMS Quantities 

We can relate our Twiss Parameters 
for the beam to RMS quantities, as 
well: u’ 

u 

Beam Ellipse in Phase Space: 
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The Beam Ellipse in a Drift  

How does this “beam ellipse” transform through a drift space? 

u’ 

u 

u’ 

u 

Drift… 

u’ 

u 

s 

Analogous to a single particle, u increases while u’ remains fixed. 
Observation: Without focusing, any beam would spread out… 

This beam is “divergent”  

Drift: u=uo+u’ol 
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The Beam Ellipse in a Quadrupole 

Recall that in a focusing quadrupole, the force of the kick 
is opposite to the sign of the particle’s position, and 
proportional to the distance from the axis. So, for a 
distribution of particles:  

u’ 

u 

Diverging…  Converging…  Beam Waist  Diverging…  

Quad… s Drift… 

A focusing quadrupole causes a diverging beam to converge. In reality, the 
scenario is more complicated because we focus in one plane while defocusing 
in the other. 

u’ 

u 
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Transporting Twiss Parameters 

According to Louiville’s Theorem, the phase space area of the beam 
does not change under linear transformations. This means that the beam 
emittance is conserved in a linear transport system. 

For our homogenous Hill’s equation, the emittance between two points is 
conserved, regardless of the change in beam shape and orientation.   

With this fact, we find that for a piece-wise constant lattice, the Twiss 
parameters transform as:  

(**Derivation**) 

(Weidemann 5.22) 
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Twiss Parameters through a Drift 

s 

γ  
β 

α 

Beam waist  

We will attach more physical meaning to these parameters soon! 

Recall that          is a measure of beam 
size.  So clearly, the beam size always 
eventually grows in the absence of 
focusing. 

(**Derivation**) 
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Summary 

  We found the equation of motion with respect to the reference 
trajectory. 

  We solved the equation of motion for the case of K=constant. 

  We represented the solution in matrix form. 

  We learned how to transport a particle through an arbitrarily long 
piecewise constant lattice, by multiplying the individual transport 
matrices in the correct order. 

  We parameterized the entire distribution of particles using Twiss 
parameters. 

  We learned how to transport the Twiss parameters – and therefore 
the shape and orientation of the beam - through a piece-wise 
constant lattice. 


