
Off-Momentum Effects and 

Longitudinal Dynamics in Rings

Lecture 8



Outline

• Dispersion (Sections 2.5.4,5.4)

• Momentum Compaction (Section 5.4)

• Chromaticity (Section12.2)

• Longitudinal dynamics in rings (Chapter 6)



Equation of Motion

• Go back to full equation of motion for x:
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• We solved the simplest case, the homogeneous differential equation, 

with all terms on the r.h.s equal to zero
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• We will now look at the highest-order energy (momentum)-

dependent perturbation term:
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Equation of Motion

• The general solution of the equation of motion is the sum of the two 
principal solutions of the homogeneous part, and a particular solution 
for the inhomogeneous part, where we call the particular solution D(s)
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• The function D(s) is called the dispersion function

• We can write this solution as the sum of two parts:
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• From which we conclude the the particle motion is the sum of the 

betatron motion (x) plus a displacement due to the energy error (x)
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sx• We can write the trajectory above in 

terms of a 3x3 matrix that includes the 

off-momentum term



Examples of trajectories

• No betatron motion: x=0:  x(s)=x=D(s)

x=D(s)
x

s

x'
=D'(s)

• with betatron motion:

x=x + xx

s

x‘=x'
+x'





Where Does Dispersion Come From?

• Imagine a particle entering a sector bending magnet with an energy that 

is a little lower than the design energy: 
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Where Does Dispersion Come From?
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• Use the transport matrix for a sector bending magnet to calculate the 

dispersion

• Giving the 3x3 transport matrix for a sector bend:



3x3 Transport Matrices for Drifts and 

Quadrupoles
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• Dispersion is generated in bending magnets

• Quadrupoles and drifts are not sources of dispersion, although they 

influence the dispersion function because the off-momentum trajectory 

is bent by quadrupoles 



Propagation of Dispersion
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• Suppose we set the starting betatron amplitude and slope equal to 

zero, that is, make x=0.
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• We can write the coordinate vector as 

• And dividing by  we have

• This means that if we know the 3x3 transport matrices, and the starting 

dispersion functions, we can calculate the dispersion anywhere 

downstream



Periodic Dispersion

• What is the dispersion in a FODO lattice?

• Construct a simple FODO lattice from this sequence

½Q-Bend- ½Q ½Q-Bend-½ Q

Where for simplicity the “Bend” has  << 1
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• We look for a periodic solution to the dispersion function in a FODO, 
that is, a function (s) that repeats itself 

• With that constraint, the (s) must reach a point of maximum or 
minimum at a quadrupole, that is ' =0.
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• Which gives with Lf /



Periodic Dispersion
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• Can solve the equation of motion:

• To arrive at the solution for (s)

• Finally, the rms beamsize at a given location has two components, one 
from the betatron motion of the collection of particles, and another from 
the finite energy spread in the beam: 
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• Likewise for the angular beam divergence 



Example

• Suppose one location in a lattice has a 

horizontal beta-function = 20 meters, 

vertical beta-function = 10 meters, and 

peak dispersion = 8 meters with x= y = 1 

mm-mrad, and  = 0.0007, 

– calculate the horizontal and vertical rms 

beamsizes 



Achromaticity

• Suppose we want to arrange the lattice so that D=D‘=0 at some particular 
location in the beamline

• Having established D=D‘=0 at some location, the lattice has D=0 
everywhere downstream, up to the next bending magnet

• Such a lattice, or section of lattice is termed achromatic

• Start with the integral equation for D(s)
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• The dispersion and dispersion derivative can be written

• In terms of the integrals



Example: Achromatic Bend

• The integrals can be made to vanish in a lattice segment with 360
horizontal phase advance through a FODO section with Bends
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Accelerator Lattices: SNS Accumulator Ring



Path length and momentum compaction
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• The path length is given by

• The deviation from the ideal path length is

• With the momentum compaction factor defined as 

• The travel time around the accelerator is

• The momentum compaction is c and the transition-gamma is 

 /1



Path length and momentum compaction

• Three cases: 

–  > t , c>0, and  increases with energy, revolution 
frequency decreases with energy

–  < t , c<0, and  decreases with energy, revolution 
frequency increases with energy

–  = t,,  =0, independent of energy.  Such a ring is 
called isochronous

• This behaviour is a result of the fact that the dispersion 
function causes higher energy particles to follow an orbit 
with slightly larger radius than the ideal orbit

• All electron rings operate above transition

• Many proton/hadron synchrotrons must pass through 
transition as the beam is accelerated
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Chromaticity

• The focusing strength of a quadrupole is 
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• A beam particle with momentum error  sees a focusing strength slightly 

different from that of a particle at the design energy 

]GeV[)1(

]T[/
3.0]m[ 2

cp

xB
k






• In addition to dispersion, we 

would also expect some effect 

to the weaked or strengthened 

quadrupole focusing seen by 

off-momentum particles

• This is the particle-beam equivalent of the chromatic aberration from light 

optics, which arises from the dependence of the index of refraction of a glass 

lens on the wavelength of light.

• Special optical materials can be made in a telescope to make the image 

achromatic



Chromaticity
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• Go back to the equations of motion for x and y

• Plug in   xxxx yy 

• We arrive at the equations of motion for the betatron amplitude, 
neglecting terms proportional to 2 or x
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Chromaticity
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• In the last lecture we studied gradient errors.  This new term is just 
another type of gradient error, as we anticipated, which will modify the 
beta-functions and therefore also the betatron tunes of a circular 
accelerator

• We calculated the betatron tune shift due to gradient errors:

• With the gradient error (k-m), this gives
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• In an accelerator without sextupoles, or with sextupoles turned off, the 
resulting chromaticity is that due solely to the slightly different focusing 
seen by off-energy particles.  This value of chromaticity is called the 
natural chromaticity, which always has a negative value!



Why do we care?

1. Non-zero chromaticity means that each 

particle’s tune depends on energy.  If there is a 

range in energies, there will be a range in 

tunes.

• A beam with a large range in tunes, or tune-spread

occupies a large area on the tune-plane.  This 

opens the possibility of a portion of the beam being 

placed on a resonance line.

2. The value of the chromaticity, as it turns out, is 

an important variable that determines whether 

certain intensity-dependent motion is stable or 

unstable.



How Sextupoles Work

• The field of a sextupole, in the horizontal plane is this:
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• The vertical field gradient is:
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• Where the coordinates for off-momentum particles (y=0, x=) has been 

taken. 
• Therefore, the sextupole provides 

quadrupole focusing in the 

horizontal plane, with focusing 

strength proportional to 

– particles with higher momentum are 

focused in the horizontal plane, and

– particles with lower momentum are 

defocusing in the horizontal plane. 

• This is exactly what is needed to counteract the dependence of 

quadrupole focusing on energy.



Chromaticity Correction: Sextupole Magnets

• We can use this feature of the sextupole field to correct the 
chromaticity, that is, make x = y = 0
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• Sextupoles placed at locations with large dispersion are more 
effective.  We also need x >> y at one location and y >> x at 
another.

  0
4

1
2221110  xxxx lmlm 




  0
4

1
2221110  yyyy lmlm 




• We need at least two sextupole magnets to simultaneously make both 
chromaticities zero.  Let’s place two sextupoles in the lattice, with 
strength m1, m2 and length l.  



Chromaticity  in FODO Cells

• The natural chromaticity in one-half FODO cell becomes:
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• So a FODO channel with 90 degrees phase advance/cell has natural 
chromaticity -1/
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• Giving for a full FODO cell:



Longitudinal Motion in Rings: Phase Stability

• The formulation of longitudinal motion in linacs holds also for rings.

• The synchronous phase is set according to the need to accelerate, and 
according to the sign of the momentum compaction so that phase 
stability is achieved
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Phase Stability

• Electron storage rings and Synchrotrons:   /2<s<

• Proton storage rings and synchrotrons below transition:  
0<s</2

• Proton storage rings and synchrotrons above transition: 
 /2 <s<

• Proton synchrotrons may start with  < tr,but since the 
energy increases, eventually  crosses the transition-
energy to reach  > tr

• This is called “transition-crossing”.  During this event, the 
synchronous phase of the RF system must jump by 180
so that the higher energy beam remains phase-stable.  

• Proton accelerators often have a “gamma-t jump”system 
consisting of a set of pulsed-quadrupole magnets that 
momentarily varies the momentum compaction by 
perturbing the dispersion function so that the lattice tr is 
pushed below the proton .



Longitudinal Equation of Motion: Small 

Oscillations
• Same analysis that we followed for the linac case can be repeated for 

the circular case

• Results in the equation of motion for the particle phase:

02  

• With an oscillation frequency given by:
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• Where 
– h is the harmonic number, defined by 

– The particle’s energy gain in one ring revolution is:

revRF hff 

sVe sinˆ
0

• The oscillation frequency is called the synchrotron frequency, and 
the ratio of synchrotron frequency to revolution frequency is the 
synchrotron tune
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Longitudinal Motion

• This should equal the result we obtained                                                 
previously for a linac:

• We can see that these two are equal by noting that, 

– The convention for linacs is

– Whereas that for rings is 

– therefore, s
ring = s

linac + /2, so 

– The momentum compaction in the linac is just: 

– Since c=(L/L)/(p/p)=0 since there are no bending magnets, and therefore 
no dispersion in a linac

– The energy gain in one ring revolution is:

– Putting all this together, we arrive at the same frequency that we calculated 
for the linac.

– The longitudinal dynamics that we learned in the linac applies directly to the 
ring case as well

– The various parameters expressed for the ring contain the momentum 
compaction factor, which is zero in a linac
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