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Interaction of Charged Particles with Fields

F = q E  v×B

We can break this vector equation down to its components

F x = q E xv y Bz−v z B y

F y = q E yv z Bx−v x Bz 

F z = q E zv x B y−v y Bx 

The (non-relativistic) effect on a particle is given by Newton's law

F = ma = m ̈x

The change in momentum over a time interval is the impulse

p = F⋅ t

The force is parallel to the E-vector.
The force is perpendicular to the plane formed by the velocity and the B-vector.

The force on a particle of charge q in fields E and B is
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Electrostatic Deflector

A field E
y
 exists between

the plates of length L and
separation d

E y =
V
d

A proton with momentum p
z
 comes in from the left.   It acquires a change in

vertical momentum  p y = F y t = e E y L/ c

The change in angle of the trajectory 
is (non-relativistically)

 =
 p y

pz

=
e E y L

c
⋅

1
m p c

Remember that the beam
rigidity of a proton is defined by

R =


c m pc
2

e 

So the deflection angle is  =  E y

c  LR

The proton spends a time

               between the plates.t =
L
 c
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Magnetic Deflector   (Dipole Bend Magnet)

A proton with momentum
p

z
 enters a field By from

the left.

The proton is deflected
to the left as it enters
the paper with the north
pole of the magnet on top.

F x = −q v z B y

 p x=−q v z B y
L
c

 =
 p x

pz

= −
c Bz L

  e

m p c
2 

Or, substituting the definition of rigidity, proportional to momentum

 =
B y L

R
Tesla⋅meters
Teslameters
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Radius of Curvature of the Orbit

Magnetic Electrostatic

B L = R

E r

c
= R

Magnet

Electrostatic

radius of curvature =  =
L


The displacement of the orbit from the original trajectory at the exit is 

 x = 1−cos ≈


2

2
For small angle
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Compare Relative Electrostatic and Magnetic Strengths

ES :  =
E y L
c

L
R

EM :  = Bz
L
R

Equate the deflection angles

E y = c B z

Typical strengths:   E = 10 MV/m   (100 kV/cm), quite high
   B = 2 Tesla   (iron pretty well saturated)

 = 0.0167

T =
1
2
m p c

22 = 130 keV

For a 130 keV proton beam, the deflecting strengths are identical.
Below that, electrostatic deflectors can be more powerful, above that,
magnets.
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The Wien Filter

The Wien filter is a velocity selector.   A particle travels through cross B
y
 and E

x

fields with the proper polarity that the forces cancel out for one particular velocity.   
Particles with other velocities will be deflected. 

Using the previous numbers of crossed fields of 2 Tesla and 10 MV/m, a
130 keV proton beam will be undeflected.  The deflection in a Wien filter
of length L for a small angle deflection is

F = q E  v×B

F x = q E x−c B y

E − B ≃  E2 −
B c
  L  e

m p c
2 

Verify this equation.
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B-Field in a Magnetic Dipole

∇×H = J

∮ H dl = N I

H  g
=1


s

steel
 = N I

steel≫1

H =
N I
g

=
B
0

[B ]=
volt sec
m2

, [H ] =
amp
m

Field concentrated in gap, assume the
permeability of steel to be very high.

N I is the current in the conductor times
the number of turns in both the upper
and lower coil.

This equation is good to usually better than 95%.   A more exact expression includes
the permeability of the steel, particularly if it is approaching saturation at 15 kGauss,
and flux lines (leakage flux) that do not encircle the windings and the gap.

If
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Homework Problems 2.1

Calculate the frequency and E and H field amplitudes for a laser

Calculate the parameters of a Wien filter.

Calculate the parameters of a magnet dipole.
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Strong Focusing

Alternating gradient (AG) focusing is known as strong focusing.   It was first discovered 
in the design of synchrotrons by Courant and Snyder at BNL and Christofolis in Europe.
(BNL promptly hired Christofolis to avoid certain problems.)

Previous weak focusing synchrotrons were:
Cosmotron (BNL)  3 GeV
Bevatron (LBNL) 6.3 GeV (BeV)  sized to discover the antiproton
Synchrophasotron (Dubna)  10 GeV  - still running, with heavy ions
ZGS (ANL)  12.5 GeV – largest weak-focusing synchrotron ever built.

One could crawl around in the vacuum chambers of these machines.

BNL then built the AGS, simultaneously with the PS at CERN.   Both are still very
active, after 50 years, supplying protons, antiprotons and heavy ions to still larger
rings.

The first linacs used no focusing, then grid and solenoid focusing, so the transmission 
was small.   The introduction of strong focusing to linacs allowed the transmission to 
approach 100%, and allowed the acceleration of very high intensities.
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The Magnetic Quadrupole, A Focusing Device

The four poles are excited with a 
quadrupole magnetic field with
the following components.

Bx = g y
B y = g x

A proton going into the paper is
deflected inward along the y-axis,
and outward along the x-axis.

Notice that the quadrupole focuses in one plane, and defocuses in the other.
Reversing the field polarity reverses the focusing/defocusing planes.

An approximate optical analogy is a cylindrical lens.   Quadrupoles do not focus
simultaneously in both planes.
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FODO refers to Focus, Drift, Defocus, Drift, the basis of strong or alternate
gradient focusing.   

For lenses of strengths f
1
 and f

2
, separated by distance d, the strength is

1
f tot

=
1
f 1


1
f 2

−
d

f 1 f 2

If f
1
 = -f

2
,

1
f tot

=
1
f 1

−
1
f 1


d

f 1
2
=

d

f 1
2
 0

And the overall focusing strength is positive (focusing).  for both FODO and DOFO
sequences.

FODO Lattice
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FODO / DOFO Transport Matrix

A ODOF lattice is represented by the series of 2x2 transport matrices

[ 1 0
− 1 / f 1 ] [ 1 d

0 1] [ 1 0
1 / f 1] [ 1 d

0 1 ] = [ 1
d
f

2d
d 2

f
−d

f 2 1−
d
f
−

d 2

f 2 ]
     F             O              D            O

The m
21

 element is less than zero, hence overall focusing.

Homework:  show the same for the OFOD sequence.

Nomenclature:   
F-quad:  focusing in x-plane
D-quad:  focusing in y-plane

D-quad                   F-quad

A sequence that is FODO in one plane is DOFO in the other plane.
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Focusing Down a Periodic Channel

Lenses of strength S and -S
occupy segment of length 4L.

S=
1
f
, −S = −

1
f

M AB = [ 1− 2 L S− 2 L2 S 2 4 L− 2 L3S 2

− 2 L S 2 1 2 L S− 2 L2 S 2] = [a b
c d ]

We cast it in a form that allows analysis of an infinitely long periodic OFOODO lattice.
This treatment is due to Courant and Snyder.  We will assume thin lenses here.

Take the unit focusing segment, and iterate it k times.
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Focusing Down a Periodic Channel  II

M AB = [ 1− 2 L S−2 L2 S 2 4 L− 2 L3S 2

− 2 LS 2 1 2 L S− 2 L2 S 2] = [a b
c d ]

Let cos=
1
2
ad = 1−2 L2S 2, sin = 2 LS  1−L2 S 2

 = −
1

 1−L2 S 2

 =
 2
S

− L2 S 
 1−L2 S 2

 =
S

 1−L2 S 2

a−d = 2 sin
b = sin 
c = −sin

For one OFOODO unit in the lattice, the matrix is: 

,  and  are the Twiss parameters
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Then the transform matrix for a unit OFOODO sequence

M AB = I cosJ sin

M AB
k = I cosk J sin k 

M AB
−1

= I cos−J sin

Can be recast as the sum of two matrices  I and J

I = [1 0
0 1] , J = [  

− −]
cos=

1
2
ad =1−2 L2S 2

As

The motion is stable if 

where

Focusing Down a Periodic Channel  III

∣ab ∣  2, −1  1−2 L2S 2   1

M AB = [1−2 LS−2 L2 S 2 4 L−2 L3 S 2

−2 LS 2 12 L S−2 L2S 2] = [a b
c d ]
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The repetitions can be expressed as trig functions.   A single FODO unit is

M AB = I cosJ sin

where

For a lattice of k unit FODO cells, the overall transfer matrix is

M AB
k

= I cosk J sin k 

So matrix multiplication is replaced by multiplying the argument of a trig function
and  is the phase advance per unit period.

Focusing Down a Periodic Channel  IV

I = [1 0
0 1] , J = [  

− −]
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Matched Functions in a Lattice

In a periodic FODO lattice, there is a particular set of betatron functions that
repeats every 2 of phase advance.   (This is the solution to an eigenvalue
equation with unity eigenvalue.)

S [


 ]i = [



] f

M = [a b
c d ] = [cos k sin k   sin k 

−sin k  cos k −sin k ] , cos = 1−2 L2 S 2

Recall that for a periodic lattice with phase advance m per period, that for k periods 

Solving the eigenvalue equation gives the matched functions at the beginning of
a beam line specified by matrix M

x =
∣b∣

1−
ad

2


2
, x =

a−d
2b

 x

The phase advance per period is  = tan−1 b
i a−ib 
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Sine-like and Cosine-like Rays

The transport matrix down the regular FODO channel for a given phase advance  is

M  = [cos k  sin k  sin k 
−sin k  cosk −sin k ]

We can choose two points on the ellipse which trace the ellipse

P1=[ 


0 ] , P 2=[
0

 
 ]  x2

2 x x ' x ' 2
= 

The beam envelope is given by
the quadratic sum of the sin and
cosine-like rays.

x = [M  P1]1
2
[M P2]1

2

The periodicity of each ray is given by the phase advance  per focusing period.
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Beam Envelope of Many Rays

The beam envelope is comprised of all 
the rays  in the beam.

The envelope, which encloses all the rays
in the beam, will be modulated by the
presence of the focusing element in the
beam line.



 Chapter 2   Transverse Beam Dynamics

 

21

 = −
1

1−L2 S 2

 =
2S − L2 S 
1−L2S 2

 =
S

1−L2S 2

Focusing Passband

Recall the matched Twiss parameters of a FODO lattice 
as a function of the focusing strength S and spacing 
between the focusing elements L and the phase 
advance  for a unit FODO cell.

As the parameter 2L2S2 approaches unity,  becomes 
large, as does the beam size

If the focusing strength S becomes small, the factor 2/S 
in  becomes large, and the beam size also becomes 
large.

There is an optimum value for LS that minimizes the 
betatron functions for the lattice, and a corresponding 
phase advance  for that optimum. 

For L = 0.5 meters, 

cos = 1−2L2 S2

x=

S = 8
3
, cos =−

1
3
,  = 109.47 degrees
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Peak Betatron Amplitude vs. Tune

The ratio of maximum to minimum 
betatron amplitude depends on the 
tune.  The beam size scales as

x = 

15 degrees per period

155 degrees per period

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

Beta Min
Beta Max

Phase Advance per Period

B
e

ta
tr

o
n 

A
m

p
lit

ud
e

max is stable below 180 degrees/period,
with a minimum around 80 degrees.  The flutter
increases with tune. Small beam waists increase
influence of space charge.
What would be an optimal phase advance?
Why?
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Matched Beam in Periodic Lattice

The unit OFOODO cell is 6 meters long:
1 meter drifts, 1 meter quadrupoles.   The
phase advance per cell is 46 degrees.

The plots show  function variation over
the cell.   The  function value is the same
for both the x- and y-planes at each end
of the cell.

This variation in the beam envelope is called
the “flutter”, and mirrors the distribution of the
focusing elements.
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Mismatched Beam in the Lattice


x
 is changed from the matched value.   

The value of 
x
 is plotted over 10 lattice 

periods.   Note that the peak values 
oscillate with a wavelength of about 3.9 
lattice periods, or a phase advance of 
the envelope “breathing” of about 92 
degrees per unit lattice period.

The phase advance of an orbit is 46 
degrees per unit cell.

Why is the envelope breathing taking 
place at twice the phase advance? 

Matched Beam         Unmatched x-beam
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Envelope Breathing of a Mismatched Beam

The reason that the envelope breathing seems to occur at twice the phase advance 
per cell is that the mismatched beam can be thought of launching two extreme rays 
with opposite signs.   Each of these rays oscillate at a phase advance of 46 degrees 
per unit cell, but their combined peak amplitudes seem to breathe at twice the phase 
advance, or 92 degrees per cell.

the mismatched beam has rays
outside of the matched emittance
ellipse.  They propagate with the
same phase advance as the others,
but add to the maximum envelope.
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Quadrupole Position Errors

In a strong focusing (FODO) channel, quadrupole transverse alignment is important.
In a linac, the drift tubes contain quadrupoles, which must be aligned to a very
small tolerance.

If a quadrupole is displaced, there will be a dipole field on the axis, which will
deflect the beam, which will then follow an oscillatory orbit.

Bdipoleequivalent = B '  x , =
B ' x Lquad

R

This initial deflection angle Dq will cause the beam centroid
to move around an ellipse with initial value at  P2 (previous slide).
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Transformation of Betatron (Twiss) Parameters

Repeat definitions:  =  x
2

 −  x '
2

 = − xx ' , 21 = 


2
=  x

2
 x '

2
− xx ' 

2

If

then

[ xx ' ] f = [a b
c d ][ xx ' ]i

[


] f = [ a2 −2ab b2

−ac adb c −bd
c2

−2 c d d 2 ][ ]i
and

[
 x

2

 xx'

 x ' 2
]
f

= [ a
2 2a b b2

ac a dbc bd
c2 2 c d d 2 ][

 x
2

 xx '

 x ' 2
]
i

For a drift

M drift= [a b
c d ] = [1 L

0 1 ]
3x3 transformation matrix is

S drift= [1 −2 L L2

0 1 −L
0 0 1 ]

We have seen how a beam vector transforms through a transport line.   We can also
specify the beam in terms of its Twiss parameters that transform through the line.
The Twiss parameters are a property of the transport line and are more fundamental
than the properties of the beam being transported.
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Homework Problems 2.2

Focusing with two dissimilar lenses.

Find the matched functions for an infinite FODO lattice

Quadrupole displacement error
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