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Chapter 3   Beam Dynamics II - Longitudinal
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The Faraday Cage

Protons are confined in a conducting
box, at low energy.  Assume they can
bounce off the walls with no energy loss.

Move the switch from position A to B. The
potential on the box rises from 0 to 1 MV.

What is the proton energy now?
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The Linac Drift Tube

A linear accelerator (linac) is comprised of a succession of 
drift tubes.    These drift tubes have holes in their ends so the 
particles can enter and exit, and when particles are inside the 
drift tube, a Faraday Cage, the potential of the drift tube may 
vary without changing the energy of the particle.

The drift tubes are arranged in a sequence with  a 
passage through their middle for the particles to 
pass.   The field in the gap between the drift tubes 
accelerates the particles.

Acceleration takes place when a charged particle is subjected to 
a field. The field inside the Faraday cage is not affected by the 
potential outside.

(Aside from fields generated by the protons themselves, the field inside
the Faraday cage is zero.)
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Some Actual Linac Configurations

We will look at:

Sloan-Lawrence Structure (Ising,  Wideroe)

Alvarez Structure

RFQ Structure

Coupled-Cavity Structure
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Some Kinematics

For simplicity, we will assume the particles are non-relativistic.   The normalized velocity is

 =  2T

mc2

T is the kinetic energy of the particle, mc2 is the rest mass, 938 MeV for protons.

The wavelength  of an RF frequency  f  is  =
c
f

For a particle traveling with velocity   , the distance z traveled in one period of the
frequency  f  is .  

 z = c×t = c×
1
f

= c×

c

= 
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The Sloan-Lawrence Structure

This is the conceptually the easiest to understand, and the oldest.   It is also
the basis of the cyclotron.

Alternate drift tubes are connected to a voltage generator providing a peak-to-peak
voltage V across the gaps with angular frequency  = 2f.  

q

When ion with charge qe enters the first gap, the voltage across the gap is V and
with a polarity that accelerates the ion.   Right then the next gap will have the 
opposite polarity.

However, by the time the ion gets to the next gap, the polarity of the generator
will have reversed, and the ion will again be accelerated.

Each drift tube comprises a Faraday Cage.   Its potential may vary, but the energy 
of the particles in the drift tube is not affected (neglecting fringe fields).
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Positive Ions in a Sloan-Lawrence Accelerator at Various Phases
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For the ion to remain synchronous as it accelerates, the distance between the gaps
must be ½ an RF cycle, or more generally, (n + ½) cycles, where n is an integer.

For an RF frequency of f, the free-space wavelength is , and the ion must travel
(n + ½ ) bl between the gaps, n = 0, 1, 2,... .

Notice that the length of the drift tubes grows so that the distance between
the gaps is given by the above formula.   

The RFQ (covered later) is an example of a Sloan-Lawrence structure.
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The Wideroe Structure

Drift tubes alternate between an excited coaxial line and the grounded  outer wall.

The coaxial line is supported by quarter-wave stubs that contain the cooling lines 
and support the excited drift tubes.  Usually, only the grounded drift tubes contain 
focusing devices.

These machines were built at GSI and LBNL for the acceleration of
uranium beams, which required very low frequency operation.  (Why?)
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The Alvarez Structure

Almost all hadron linacs are of this variety.    It was invented in the 1940's at LBNL,
by Luis Alvarez, at the Radiation Laboratory, later LBNL.

The structure is based on a resonant pillbox cavity operating at the lowest resonance,
where the E-field is uniform along the axis (z-direction) of the cavity.

In order to have a high
accelerating efficiency
(high TTF), we introduce
a re-entrant gap in the
structure.
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To form an accelerator, take a set of single-cell cavities and concatenate them.

If we phase the RF fields in all the cavities to be identical in time, then the 
spacing between the gaps is , or more generally, n, where n is an integer:
n = 1, 2, 3,... .

By the time the ion gets from one gap to the next, the field has progressed one 
(or multiple) RF cycles.

This structure would work, and has been used.   It has the advantage that if the 
cavities are individually excited with arbitrary phase, then the energy of the ion 
can be varied, as  is a constant, but  can be chosen for the ion in question.

Note, however, if the cavities are all in synchronism, then the velocity at each 
location is fixed, thereby the energy is fixed.   The Alvarez structure is inherently 
a fixed-velocity structure.
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We can improve on this configuration.

Currents flow along the walls, heating
them and requiring RF power.  The
fields on each side of the walls separating
each cell are identical in amplitude and
direction, so the walls separating the cells
may be removed.   The drift tubes are
suspended on small rods (stems).

Here, the beam aperture is shown.

This is one way to look at the Alvarez 
structure:  a series of single-cell cavities, 
all in phase, where the separating septa 
(walls) are removed without altering the 
field configuration.
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An Alternate Way of Considering the Alvarez Structure.

Start off with a long pillbox
cavity with the electric field
along the axis.

An ion in this field will just
oscillate along z, but not be
accelerated.

If drift tubes are introduced into
the cavity with the right spacing,
the ion will be inside a Faraday
Cage. When the field reverses
the ion is shielded from the field
and is not decelerated.   The ion
comes to the accelerating gap at
the time when the field will
accelerate the beam. 

Note the half drift tubes at the ends.
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Homework Problems 3.1

1.  Explain why the distance between the gaps in a Sloan-Lawrence structure
is /2 and for an Alvarez structure is .

2
Can the distance between gaps in the two types of structures be any other 
multiple of /2 or ?

3
Using a spreadsheet, calculate the drift tube sequence for a linac of 5 drift
tubes.   Assume TTF=0.9.
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Charged Particle in a Static Electric Field

Two parallel plates are at potentials
V1 and V2, and are separated by 
distance d.

The electric field between the plates is

E z =
V 2−V 1

d

If a particle with charge q leaves the plate with potential V
1
, when it reaches

the plate with potential V
2
 has gained (or lost) energy

W = q E zd

Units:  Energy is expressed in units of electron-volts.   The unit of q is electron,
the unit of E

z
 d is (Volts/meter x meter = Volts).
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Electron vs. Proton Energy

Will an electron, with a mass of 1/1838 of a proton, have the same energy as a proton
when accelerated through the same voltage drop? (Don't forget to reverse the polarity 
of the voltage source.)

Yes, it will.   But it will have a different momentum and a different velocity.

For a 1 MeV proton and a 1 MeV electron, the relativistic factors are:

  

p 1.00107 0.04614 0.04619
e− 2.95695 0.94108 2.78272

p p
pe

=
mc  p
mc e

= 30.47

(Old CRT-type) color TV sets have an accelerating potential of about 26 kV.
Is the electron beam that hits the screen relativistic?

KE = −1mc2

 =
1

1−2
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Heavy Ions

Ions are characterized by the number of electron charges q and the mass A in
units of AMU (Atomic Mass Units), 1/12 of the mass of a carbon-12 atom.

For protons, q = -1 and A = 1.0073.   
For an alpha particle, q = -2 and A = 4.0026.   (We won't pay attention to the sign.)

There are two conventions when specifying the kinetic energy of an ion:

        the total kinetic energy
        the kinetic energy per nucleon.

Neither of these is the total energy, which is the kinetic energy + the rest mass.

Accelerator physicists tend to use the kinetic energy per nucleon, as this directly
gives the velocity of the ion.

Nuclear physicists tend to use total kinetic energy, as this relates to the energy
transferred in a nuclear reaction.

Non-relativistically: W =
1
2


2mc2 If m is the total mass, W is the total KE,
if m is the mass of 1 AMU, W is the KE/n.
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The Cockcroft-Walton Accelerator

The Cockcroft-Walton (CW) accelerator works on the principle of acceleration
of charged particles through a field formed by a high-voltage terminal where
an ion source is located, to a different potential, usually ground.

Almost all accelerators start with a d.c. voltage drop accelerator to get the ion
started, and then other types of accelerators usually follow to accelerate to
higher energy.
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More
Cockcroft-
Waltons

One problem with C-W's is 
the ion source must be at 
high voltage.  (How is the 
power transmitted to the ion 
source house?)

C-W's are still in use at
FNAL and LANL, where
major RFQ  development 
has taken place.
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The Transit Time Factor

For a very narrow gap and small aperture, the field is nearly constant in the
gap, and the ion picks up a kinetic energy almost equal to the voltage across
the gap.

For wider gaps, necessary to hold the gap voltage without sparking, the ion
is in the gap for a longer time, and spends more time at a field level less than
the peak field for a short gap.   The field is changing in time, and eventually
even reverses.   For a very long gap, the ion may spend more time in the
reverse field polarity and actually be decellerated.   In this case T < 0.

An idealized calculation assumes a square field profile from -g/2 to +g/2.  
Real fields not so ideal.  We also assume no velocity change due to acceleratio in 
the gap and that the field is at a maximum when the ion was in the center of the gap.
For longitudinal focusing, the ion will enter the gap as the field is still rising.

A more accurate calculation integrate the actual field in the gap, including the
fringe field in the drift tube bore along the beam axis.

The relationship between the bunch centroid and the peak of the gap field is
the stable phase, and the sign is negative for longitudinal focusing.
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DC  Acceleration Across Physical Gap

V = ∫ E  zdz

W = W 0∫e E  z dz

Total voltage is the integral 
of the field.   This is a 
generalization of the simple
formula.

The on-axis and off-axis
integrals will be identical.

The off-axis field Ez(z) is 
enhanced near the outer 
edges of the gap.

This produces a significant
effect on the beam dynamics
in the gap.

The kinetic energy is increased
by the voltage drop across the gap.
(Is this relativistically correct?)
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Acceleration by Time-Varying Fields: Transit Time Factor

Let the field in the gap vary sinusoidally with angular frequency u

E r , z , t  = E r , z  cos t 

We will choose t so that the ion cross the center of the gap at t=0 where the field
is at a maximum value.

For a particle traveling at a velocity , and the field varies with angular frequency ,

z = c t  =
c
f

=
2 c


so the spatial variation of the field is 

E r , z , t  = E r , z  cos
 z
c

 = E r , z cos
2

z 
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Acceleration by Time-Varying Fields: Transit Time Factor

W = qe∫
−∞

∞

E r , z cos  t dz = qe∫
−∞

∞

E r , z cos 
 z
 c

dz

For a very idealized case we can estimate
the transit time factor by assuming that the 
field isflat in the gap, and  zero outside of 
the gap region and there is no radial dependence.

E  z  = 0, z  −
g
2,

z 
g
2

Then W = qe∫
−
g
2


g
2
V
g
cos  2


z dz = qV

sin  g 
 g


≡ qVT

This defines the transit-time factor T or TTF.  The ion, passing through the gap sees
a varying field which is not always at its peak value.   The TTF takes into account the
fact that the field is not flat in the gap.

Typically, for a gap ¼ the length of the cell, in a bl cell, T = 0.9.

Note that this calculation does not take into account the effect of a finite bore
radius of the beam aperture.   We will add that in later.
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Transit Time Factor Depends on Particle Velocity

The ion integrates the electric field along the axis as the field is changing 
in time.   A slow particle may see the field actually reverse and decelerate
the particle.   The energy gain in a gap with average axial field of E0 is
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W = q E0T cos 

The plot shows the field 
calculated by Superfish (red), 
and the field experienced by a 
particle crossing the cavity for 
an RF phase advance of 180 
degrees (green) and 360 
degrees (blue).  This is for
the final buncher cavity
geometry (with nosecones).

The energy corresponds to 
5.9 and 24.7 MeV, and the 
TTFs are 0.364 and 0.804.
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1.  Trace out the equipotentials for a gap.

2.  Trace out the field vectors for a gap.

3,4,5.  Trace out the trajectories for an on- and off-axis proton, and an electron

Homework Problems 3.2
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Riding the Surf:  Acceleration and Phase Stability

Acceleration takes place because the ion is synchronous with a standing or
traveling wave in the structure of a polarity that causes acceleration.

Other waves may be present, but if the ion velocity is not synchronous with
them, they will, on the average, not affect the ion's energy.

The fundamental objective of RF accelerators is to design a structure that
contains a component of the electric field that moves in synchronous with
the ion.   Additional consideration is then given to focusing the ions, both
longitudinally and transversely.   The ions surf on an electric wave.
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Longitudinal Focusing

The beam energy is changed by the integral of the field: W = qe∫ E z dz

In contrast to linear transverse restoring fields, the longitudinal fields are nonlinear.
Also, the longitudinal field is used to both accelerate and focus the beam.

The longitudinal focus is brought about by a rising field as the bunch enters the
accelerating gap.  Late particles are given an extra kick to bring them back to the bunch,
early particles receive less acceleration and fall back into the bunch.

In the time domain, later ions
experience a larger acceleration,
earlier ions a smaller acceleration.

As the time variation of the
field is sinusoidal, and not linear
in time, the restoring force on
the bunch is non-linear.

By convention, the phase of the center of the bunch is referred to the point in the
RF cycle where the field is maximum.   The phase which produces longitudinal
focusing is negative.  
 
(In synchrotron terminology, the phase is measured to the zero crossing.)
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Nonlinear Phase and Energy Equations

The basic Alvarez accelerating cell
has two halves: before and after
the accelerating gap.   The initial
beam velocity bi is increased to the
final beam velocity bf after the gap.

Lcell =
i f

2
The cell length is

We will derive two first-order difference equations, one for the energy after
the accelerating gap, and the other for the change in phase relative to the
stable phase after the gap.   From these difference equations, we can derive
the equation of motion of particles in the bunch.

These equations describe the motion of a particle within the bunch, relative
to the “synchronous particle”, the ideal particle that follows the initial design
of the accelerator.   The equation of motion of the synchronous particle is
determined by the drift tube sequence and field amplitude of the ideal accelerator.
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We first define the phase slip of a particle relative to the synchronous phase
as a consequence of a energy error in a unit cell of length Lc = s.

The relationship between the phase slip and the energy error is

d = −
2


Lc

dW

mc2


= −
2 Lc


3


dW

mc2

Put in terms of a deviation from the synchronous phase fs and energy Ws


3 −s

Lc
= −

2


W−W s

mc2

This (linear) difference equation gives the difference in phase from the
stable phase for a given energy difference from the synchronous energy
in an acceleration cell of length Lc. 

d  = −
2


 z = −
2


Lc




so
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Next, we define the change in energy gain in a cell relative to the synchronous
energy for a given phase error.   This relationship is non-linear.

The energy gain is related to the phase of the particle relative to the phase of the RF.

EnergyGain = qe∫ E  z T cosdz = qe E0 LcT cos

The difference in energy gain from the synchronous particle is then

W−W s

Lc
= qe E 0T cos−coss

The term “synchrotron motion” here is a holdover from the original formulation
of longitudinal beam dynamics that was first derived for synchrotrons by McMillan
and Veksler.   Also, we refer to transverse beam oscillations as “betatron oscillations”,
because the theory was first worked out by Kerst and Serber for betatrons.
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Difference Equations of Synchrotron Motion

We now have two difference equations (non-relativistic) in the parameters    and W


3 −s 

Lc
= −

2


W−W s

mc2

W−W s

Lc
= qe E 0T cos−cossand

These equations can be iterated numerically, with different initial conditions of
the phase error from the synchronous phase.

The synchronous phase here is 
-30 degrees.   The oscillation
is launched with different initial
phases 10 to 60 degrees from
the stable phase.

Note that small phase oscillations
produce a smooth rotation in
phase space, but in the limiting
case, a cusp occurs at +30 degrees.

The boundary of the diagram is the
separatrix.   Motion outside the
separatrix is unstable.
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Orbits in Longitudinal Phase Space

The particles rotate around the 
stable fixed point at s = -30 
degrees and dW = 0.

As the oscillation amplitude 
increases, the orbits become non-
linear up to the point where the 
orbit intersects the unstable fixed 
point at s = +30 degrees. This 
orbit also crosses the energy axis 
at -60 degrees.

The limiting orbit defines the separatrix, outside of which the orbit is unstable and 
diverges in phase space away from the stable fixed point.   The separatrix defines the 
maximum energy deviation any particle in the bunch may have and still stay captured 
within the bunch.

The frequency of the oscillation depends on the amplitude of the oscillation.   This is
the hallmark of a nonlinear oscillation where the restoring (focusing) force is a nonlinear 
function of the amplitude of the oscillation.
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Separatrices for Stationary and Moving Bucket

We refer to the bunch as being in an accelerating “bucket”.

The stationary bucket, on the left, corresponds to s = -90 degrees, or no energy gain 
in the gap, which goes as cos .   However, the beam is still focused longitudinally, 
and the ions exhibit longitudinal motion.   The stable fixed point in the stationary 
bucket is at -90 degrees, the unstable fixed point is at +90 degrees, 180 degrees 
ahead, and a comparable fixed point is at -270 degrees, 180 degrees behind.   There 
will be a series of separatrices that just touch along the phase axis.

When an unbunched beam is first injected into a series of accelerating cells, the will 
tend to start bunching and develop an energy spread.   This is how the bunching 
process starts in an RFQ accelerator, for example.
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Differential Equation of Longitudinal Motion

The two difference equations can be transformed by eliminating the energy variable
W  producing a second-order non-linear differential equation of motion.   The equation 
for the evolution of the phase is

d 2


ds2
= −

2


3


qe E 0T

mc2
cos−coss

The equations for energy and phase can be integrated twice, giving



3 W−W s

mc2 
2


qe E0T

mc2
 sin−coss=−

q e E 0T

mc2
 sins−scoss

Where the term on the right is a constant of integration, the energy in the system.

The second-order differential equation for a harmonic oscillator is d 2


ds2
= −k2


which is linear and has a sinusoidal solution.

Here, d 2


ds2 = −k ' 2 cos−coss

which exhibits not only amplitude-limited behavior, but the oscillation frequency 
depends on the amplitude of the oscillation.   If the amplitude is large enough so
that the particle follows along the separatrix, the oscillation frequency goes to zero.
(The particle gets stuck at the unstable fixed point.)
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Potential Function of a Series of Separatrices

Since the energy gain is given by W−W s = Lcq e E 0 cos−coss

we can integrate this to get a potential function  = ∫W dz

potential ~ ∫ cos−cossd

= sin−coss

The ions reside in and oscillate around the bottoms of the potential wells.
Ions with energy greater than the well depth can spill out of  the well (separatrix), 
and will have the wrong energy to settle down in an adjacent potential well.
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Limiting Energy Spread: Height of the Separatrix



3 W−W s

mc2 
2


qe E0T

mc2
 sin−coss=−

q e E 0T

mc2
 sins−scoss

By choosing a phase, the the locus of the energy may be mapped out.
The maximum energy deviation (W-Ws)

2 is maximized at  = s.  This is
the half-height of the separatrix, and the maximum energy that will allow
a particle to be confined to the bunch. 

W−W s

mc2 
2

= −
23




qe E 0T

mc2
 sins−s coss

or

W
mc2 =  2qe E 0T 

3


mc2 s coss−sins

(non-relativistic)
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Homework  Problems 3.3 

1
Why is it necessary for longitudinal focusing that the stable phase of the
center of the bunch be negative?   What would happen if the stable phase
were zero?    Would this result in a higher accelerating rate?

2
If the accelerating field E0 and the stable phase ♫s is constant, how does
the separatrix height W scale with particle energy?   How does the relative
energy spread  W/W scale with energy?
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