
Classical Mechanics and 
Electromagnetism 
-  MKS vs CGS 
-  Maxwell equations 
-  Electromagnetic waves 
-  special relativity 
-  coordinate system 
-  harmonic oscillators 



 

MKS CGS 
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Maxwell’s equation 

  James Clerk Maxwell, “On Physical Lines of Force”, 1861-1862 

Differential form Integral form 

Gauss’s Law 

Farady’s Law 

Ampere’s Law 
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Electric field of a beam of charged particles 

  Uniformly distributed beam of charged particles with charge 
intensity   
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Magnetic field of a uniform current 

  Uniformly distributed beam of charged particles with current 
intensity of 
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Electromagnetic wave propagation 

  propagation of an electromagnetic wave in vacuum 
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Traveling wave in vacuum 

  transverse wave:  
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Special Relativity 

  The laws by which the states of physical systems undergo 
change are not affected, whether these changes of state be 
referred to the one or the other of the two systems in 
uniform translational motion relative to each other. 

  Invariant of the speed of the light, i.e. the speed of the light 
in vacuum is the same for all reference systems 

  Nothing can be faster than the speed of the light 



Lorentz Transformation 

  two space-time reference systems, (t, x, y, z) and (t’, x’, y’, z’) 
moving w.r.t. at a velocity of v along the axis of x 
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Special Relativity 

  Time dilution: a clock in the moving reference frame(primed 
frame) runs slower than in the rest frame of the clock  

  Length contraction:  the length of a project in the direction of 
primed frame relative to the rest frame is shorter in the 
moving frame € 
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Space-time Four vector 

  definition 
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  Length of four vector: Lorentz invariant 
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Four momentum 

  Conservation of Four momentum: 
  Energy conservation 
  Momentum conservation 
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Fixed target experiment 

  In the lab frame 

  In the center of mass frame: 
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Lorentz transformation of E&M fields 

  Prime reference system boost w.r.t. the unprime system along 
x direction 
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Electromagnetic field of a moving charge 

  Ratio of transverse electric field and longitudinal electric field 
is ~vt/b,  

  Generate transverse magnetic field 
  Electric field lines becomes whiskbroom shape instead of 

isotropically distributed   

x 

y 

z 

  

€ 

 v 
Q 

Observation 
point 

b 



Lorentz force 

  A moving charged particle with velocity V in a electric-
magnetic field  
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  Home work: Design a Wien filter, a device of static electric and 
magnetic field arranged in a way that only allow charged 
particle q with a specific velocity v to pass. In other words, 
select electric field and magnetic field which is transparent to a 
35keV electron beam. Please also describe the trajectory of 
electron in side the wien filter. 



Harmonic oscillator 

  Equation of motion 
  In absence of any frictions or other external force 
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Driven Harmonic oscillator 

  In the presence of an external driving force 
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Driven Harmonic oscillator 

  Equation of motion 

€ 

d2x(t)
dt 2

+ω 2x(t) = f (t)

€ 

f (t) = Cme
iωmt

€ 

x(t) = Aeiωt + Ame
iωmt

€ 

d2x(t)
dt 2

+ω 2x(t) = Cme
iωmt

€ 

= Cme
iωmt

m= 0
∑

  for 

  Assume solution is like 

€ 

Am =
Cm

ω 2 −ωm
2



Resonance Response 
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Coupled Harmonic Oscillator 

  Equation of motion 
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Coupled Harmonic Oscillator 

  The two frequencies of the 
harmonic oscillator are 
functions of the two 
unperturbed frequencies 

  When the unperturbed 
frequencies are the same, a 
minimum frequency 
difference 
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Nonlinear Harmonic oscillator 

  Harmonic oscillator with high order terms 
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Exact Solution of Pendulum Equation 

  Unlike linear linear oscillator, pendulum has oscillation 
period as function of its amplitude.  

  Stable condition: 

  Separatrix:  
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Phase Space 

  Pendulum 
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Nonlinear Oscillator Frequency 

  Pendulum period expression 
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Nonlinear Resonance 

  Unlike linear harmonic resonance, the frequency of a nonlinear 
oscillator is a function of amplitude 
  Small angle pendulum, i.e. small x  

  Nonlinear resonance  
    amplitude doesn’t grow 
    unlimited because  
    of the detuning, i.e. frequency 
    moves away from resonant 
    condition as amplitude grows 
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Home works 

  The Stanford LINAC accelerates electrons to 50 GeV in a 
distance of 2 miles at a constant rate of energy gain. For an 
observer who rides precariously on an electron, how long 
does this journey last? 

  A positron beam accelerated to 50 GeV in the linac hits a 
fixed hydrogen target. What is the available energy from a 
collision with a target electron assumed to be at rest? 
Compare this with that obtained in a linear collider where 
electrons and positrons from two linacs collide head on with 
the same energy.  


