transverse motion: betatron oscillation

» The general case of equation of motion in an accelerator

x"+kx =0  Where k can also be negative

» Fork>0
x(s) = Acos(Vks+x)  x'(s) = Ak sin(\ks + %)

» Fork <0

x(s) = Acosh(Wks+ %) x'(s)=—-Ak sinh(+/ks + x)



Hill's equation

» In an accelerator which consists individual magnets, the
equation of motion can be expressed as,

x'+k(s)x =0 k(s+ L)) =k(s)

» Here, k(s) is an periodic function of L, which is the length of
the periodicity of the lattice, i.e. the magnet arrangement. It
can be the circumference of machine or part of it.

» Similar to harmonic oscillator, expect solution as

x(s) = A(s)cos(y(s) + x)

» or:

x(s) = Ay, (s)cos@p(s)+ x)  B.(s+L,)=p.(s)



Hill’s equation: cont’d

x'(s) =—A4/P, l/) (s)sin(y(s) + x) + P ( )Aw/l//i’ ( )cos(w(s) + %)

» with

1 /3 /3'2

p.(s)

c=1

P'(s) =

» Hill's equation x''+k(s)x =0 s satisfied

x(5) = Ay[B.(s) cos(s) + %)
x'(s) = =Ay1/B,(s) sin@(s) + x) + P "“Z(S) Ay1/B,(s) cos@(s) + x)




Betatron oscillation

» Beta function /3 (S

Describes the envelope of the betatron oscillation in an accelerator

» Ph d :
ase advance W(s) = fo
B, (S)
» Betatron tune: number of betatron oscillations in one orbital turn
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Hill’s equation: cont’d

x():'A\//?oCOSX x6=—\/ﬁosmx+%\/ﬁocosx
X - By . VB,

COSX?A\/EO Sinx =~ BT A X
x(s) =— Als) (COsSAY+ o, sSInAY) x, — \//J)(S)/J)O sin Ay x,,
0
» With:

ofs) = _ﬁ'(s)
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Transfer Matrix of beam transport

» Proof the transport matrix from point 0 to point s is

ps)

( X (S)) B (CoOsAY + a, sinAy) B, B(s) sin Ay (
x'(s)) | 1+ (xoa(s) —af ) [50 ) |
m m B(s) (cos Ay — a(s)sin Ay)
» with:

x(s) = A, () cos@(s) + x)
x'(s) = —Aw/l/[a’x(s) sin(yY(s) + x) + ﬁ'xz(s) Aw/l/ﬁx(s) cos(y(s) + x)




One Turn Map

» Transfer matrix of one orbital turn

(cos2nQ, +a, , sin2zxQ ) B, sin2aQ,

)C(SO+C) a 1+O{2 X(SO)
X¥'(s, +C) - — 5 —05in 2710, (cos2aQ, —a,  sin27a0, )\ x'(s,)

X80

» With Qx is the betatron tune, # of betatron oscillations in one
orbital revolution

270, = | ﬁ%ds

Stable condition

Tr(M,,,.)=2cos2n0, mm—p |

Tr(Ms S+C)




Stability of transverse motion

» Matrix from point | to point 2
M. =M MM,

» Stable motion requires each transfer matrix to be stable, i.e. its
eigen values are in form of oscillation

sy 18

1 O
M- Al1=0 With I=(0 1) and det(M)=1

X =Tr(M)A+det(M)=0

1

A= lTr(M) + \/i[Tr(M)]Z -1 ) ‘ETNM)

2

<1.0




Closed Orbit

» Closed orbit;

x(s+ OC)
x'(s+OC)

|

{

x(s)
x'(s)



Phase space

» In a space of x-x’, the betatron oscillation projects an ellipse

12 2 I
Pp.x“+y x"+2a xx'=¢€

where
1 .
o, =——
X 2/3X
By.=1+a’

» The are of the ellipse is 7€



Courant-Snyder parameters

» The set of parameter (8, a,andy,) which describe the phase
space ellipse

» Courant-Snyder invariant: the area of the ellipse

2 2
e=P.x"+y x" + 20 xx'



Phase space transformation

» In a drift space from point | to point 2

U 7

» Effect of a focusing quadrupole

Focusing quad



How to measure betatron oscillation

» How to measure betatron tune!?

» How to measure beta function?

» How to measure beam emittance!?



Dispersion function

» Transverse trajectory is function of particle momentum.

. p+x gbB X ,
x—p2 =—2(1+>) B, =B,+B'x

o ym -~ p

1 2p, — B pl|l 1A
x||+ 2p0 p+ p()x:__p
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A
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Dispersion function: cont’d

» In drift space

l=0 and p'_() = D'=0

0
dispersion function has a constant slope

» In dipoles,

1
—=0 and B'=0
0

Dn_l_[ 1 zpo_p]D=l
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o p 0




Dispersion function: cont’d

» For a focusing quad,

l=() and p's () =>D"+B'&D=O

P P

dispersion function oscillates sinusoidally

» For a defocusing quad,

l:() and B () :D"—B'&D=O

P P

dispersion function evolves exponentially



Effects of Errors

dipole errors
quadrupole errors
resonance



Closed orbit distortion

» Dipole kicks can cause particle’s trajectory deviate away from
the designed orbit
— Dipole error .
— Quadrupole misalignment :

» Assuming a circular ring with a single
dipole error, closed orbit then becomes:

x(s) Y ‘M x(s) O]
X'(s) = M(s,s,) (Sy,9) X'(s) + 9



Closed orbit: single dipole error

» Let’s first solve the closed orbit at the location where the
dipole error is

()~ s ol Z600) ()
x'(sy) x'(sy) v,

x(sy) = P.(Sy) o costQ,

2sin O,

0
nJstQ

X

x(5) = ~/B.(55)B.(5) Y cos[y(s,s,) — 0, |

» The closed orbit distortion reaches its maximum at the
opposite side of the dipole error location



Closed orbit distortion

» In the case of multiple dipole errors distributed around the
ring. The closed orbit is

x(8) = /B, (s) 2\//3 (s,

» Amplitude of the closed orbit distortion is inversely
proportion to sinTiQ, ,

2 an cos|yY(s;,s,) — 70, |

— No stable orbit if tune is integer!



Measure closed orbit

» Distribute beam position monitors around ring.
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Control closed orbhit

» minimized the closed orbit distortion.

» Large closed orbit distortions cause limitation on the
physical aperture

» Need dipole correctors and beam position monitors
distributed around the ring

» Assuming we have m beam position monitors and n
dipole correctors, the response at each beam
position monitor from the n correctors is:

FEE

COS[I/J(S”SO) — JTQx]

2smn



Control closed orbhit

» Oy} (8

0,

=)

\ X/ \0,)

» To cancel the closed orbit measured at all the bpms, the
correctors are then

(6, [ x,)

(o)




Quadrupole errors

» Misalignment of quadrupoles
— dipole-like error: kx

— results in closed orbit distortion

» Gradient error:
— Cause betatron tune shift

— induce beta function deviation: beta beat



Beta beat

» In a circular ring with a gradient error at s0, the tune shift is

So

M(s+ C,s) = M(S,SO)(_ik ?)M(SO,S)

B.(s)sin2aQ_ = ,(s)sin270 , +

Ak ﬁxo(s)f 20050) 6520, + 2 1Ay, o D]

A/J) ﬁxO(SO)
/3 2 Sil ) 2.7 EQXO S( on wS,SO )

Unstable betatron motion if tune is half integer!



