
transverse motion: betatron oscillation 

  The general case of equation of motion in an accelerator  

€ 

x' '+kx = 0

€ 

x(s) = Acos( ks+ χ)

€ 

x'(s) = −A k sin( ks+ χ)

€ 

x(s) = Acosh( ks+ χ)

€ 

x'(s) = −A k sinh( ks+ χ)

  For k > 0 

Where k can also be negative 

  For k < 0 



Hill's equation 

  In an accelerator which consists individual magnets, the 
equation of motion can be expressed as,   

  Here, k(s) is an periodic function of Lp, which is the length of 
the periodicity of the lattice, i.e. the magnet arrangement. It 
can be the circumference of machine or part of it. 

  Similar to harmonic oscillator, expect solution as 

  or: 

€ 

x' '+k(s)x = 0

€ 

k(s+ Lp ) = k(s)

€ 

x(s) = A βx s( ) cos(ψ(s) + χ)

€ 

βx (s+ Lp ) = βx (s)

€ 

x(s) = A(s)cos(ψ(s) + χ)



Hill’s equation: cont’d 

€ 

x'(s) = −A βx s( )ψ '(s)sin(ψ(s) + χ) +
β 'x s( )
2

A 1/βx s( ) cos(ψ(s) + χ)

€ 

ψ'(s) =
1

βx (s)

€ 

βx ' '
2
βx −

βx
' 2

4
+ kβx

2 =1

  with 

  Hill’s equation                               is satisfied 

€ 

x' '+k(s)x = 0

€ 

x(s) = A βx s( ) cos(ψ(s) + χ)

€ 

x'(s) = −A 1/βx s( ) sin(ψ(s) + χ) +
β 'x s( )
2

A 1/βx s( ) cos(ψ(s) + χ)



Betatron oscillation 

  Beta function           : 
  Describes the envelope of the betatron oscillation in an accelerator 

  Phase advance: 

  Betatron tune: number of betatron oscillations in one orbital turn  

€ 

βx (s)

€ 

ψ(s) =
1

βx (s)0

s
∫ ds

€ 

Qx =
ψ(0 |C)
2π

=
ds

βx (s)
∫ /2π =

R
〈βx 〉



Hill’s equation: cont’d 

€ 

x0 = −A β0 cosχ

€ 

x0
' = −

A
β0
sin χ +

β0
'

2
A
β0
cosχ

€ 

cosχ = −
x0

A β0

€ 

sinχ =
β0
'

2A β0
x0 −

β0
A

x0
'

€ 

x(s) = −
β s( )
β0
(cosΔψ+α0 sinΔψ) x0 − β s( )β0 sinΔψ x0

'

  With: 

€ 

α s( ) = −
β' s( )
2



Transfer Matrix of beam transport 

  Proof the transport matrix from point 0 to point s is 

€ 

x(s)
x '(s)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

β(s)
β0
(cosΔψ +α0 sinΔψ) β0β(s) sinΔψ

−
1+α0α(s)
β0β(s)

sinΔψ +
α0 −α(s)
β0β(s)

cosΔψ β0
β(s)

(cosΔψ −α(s)sinΔψ)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

x0
x'0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

x(s) = A βx s( ) cos(ψ(s) + χ)

€ 

x'(s) = −A 1/βx s( ) sin(ψ(s) + χ) +
β 'x s( )
2

A 1/βx s( ) cos(ψ(s) + χ)

  with: 



One Turn Map 

  Transfer matrix of one orbital turn 

€ 

x(s0 + C)
x '(s0 + C)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

(cos2πQx +αx,s0
sin2πQx ) βx,s0 sin2πQx

−
1+αx,s0

2

βx,s0

sin2πQx (cos2πQx −αx,s0
sin2πQx )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

x(s0)
x '(s0)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

Tr(Ms,s+C ) = 2cos2πQx

€ 

1
2
Tr(Ms,s+C ) ≤1.0

Stable condition 

  With Qx is the betatron tune, # of betatron oscillations in one 
orbital revolution 

€ 

2πQx =
1
β s( )

ds∫



Stability of transverse motion 

  Matrix from point 1 to point 2 

  

€ 

Ms2 |s1
= MnM2M1

  Stable motion requires each transfer matrix to be stable, i.e. its 
eigen values are in form of oscillation 

€ 

|M − λI | = 0

€ 

I =
1 0
0 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

λ2 −Tr M( )λ + det M( ) = 0

€ 

det M( ) =1

€ 

λ =
1
2
Tr M( ) ±

1
4
[Tr M( )]2 −1

€ 

1
2
Tr(M) ≤1.0

With  and  



Closed Orbit 

  Closed orbit: 

€ 

x(s+ C)
x '(s+ C)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

x(s)
x'(s)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

x(s+ C)
x '(s+ C)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = M(s+ C,s)

x(s)
x '(s)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 



Phase space 

€ 

βx x '
2 +γ x x

2 + 2αx xx'= ε

€ 

βxγ x =1+αx
2

  In a space of x-x’, the betatron oscillation projects an ellipse 

where 

€ 

αx = −
1
2
βx
'

  The are of the ellipse is  

€ 

πε

€ 

εxβx
€ 

εx /βx
X’ 

X 



Courant-Snyder parameters 

€ 

ε = βx x '
2 +γ x x

2 + 2αx xx'

  The set of parameter (βx,	
  αx	
  and	
  γx) which describe the phase 
space ellipse 

  Courant-Snyder invariant: the area of the ellipse 



Phase space transformation 

  In a drift space from point 1 to point 2 
X’ 

s 

X’ 
  Effect of a focusing quadrupole 

Focusing quad 

s 



How to measure betatron oscillation 

  How to measure betatron tune? 

  How to measure beta function? 

  How to measure beam emittance? 



Dispersion function 

  Transverse trajectory is function of particle momentum.   

€ 

x' '− ρ + x
ρ2

= −
qBy

γm
(1+

x
ρ
)2

€ 

By = B0 + B' x

€ 

x' '+ 1
ρ2
2p0 − p

p
+

B'
Bρ0

p0
p

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ x =

1
ρ
Δp
p

€ 

x = D(s)Δp
p

€ 

D(s+ C) = D(s)

€ 

D' '+ 1
ρ2
2p0 − p

p
+

B'
Bρ0

p0
p

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ D =

1
ρ



Dispersion function: cont’d 

  In drift space 

   dispersion function has a constant slope   

€ 

1
ρ

= 0

€ 

B'= 0and  

€ 

⇒ D' '= 0

  In dipoles,  

€ 

1
ρ
≠ 0

€ 

B'= 0and  

€ 

D' '+[ 1
ρ2
2p0 − p

p
]D =

1
ρ



Dispersion function: cont’d 

  For a focusing quad,  

   dispersion function oscillates sinusoidally   
€ 

1
ρ

= 0

€ 

B'> 0and  

€ 

⇒ D' '+B' p0
p
D = 0

  For a defocusing quad,  

   dispersion function evolves exponentially    
€ 

1
ρ

= 0

€ 

B'< 0and  

€ 

⇒ D' '−B' p0
p
D = 0



Effects of Errors 

-  dipole errors  
-  quadrupole errors 
-  resonance 



Closed orbit distortion 

  Dipole kicks can cause particle’s trajectory deviate away from 
the designed orbit 
-  Dipole error 
-  Quadrupole misalignment 

€ 

x(s)
x '(s)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = M(s,s0)[M(s0,s)

x(s)
x '(s)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

0
θ

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ ]

  Assuming a circular ring with a single 
dipole error,  closed orbit then becomes: 

s0 

BPM 

s 



Closed orbit: single dipole error 

€ 

x(s0)
x '(s0)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = M(s0 + C,s0)

x(s0)
x '(s0)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

0
θ

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

  Let’s first solve the closed orbit at the location where the 
dipole error is 

€ 

x(s) = βx (s0)βx (s)
θ

2sinπQx

cos ψ(s,s0) −πQx[ ]
€ 

x(s0) = βx (s0)
θ

2sinπQx

cosπQx

  The closed orbit distortion reaches its maximum at the 
opposite side of the dipole error location  



Closed orbit distortion 

  In the case of multiple dipole errors distributed around the 
ring. The closed orbit is 

€ 

x(s) = βx (s) βx (si)
i
∑ θi

2sinπQx

cos ψ(si,s0) −πQx[ ]

  Amplitude of the closed orbit distortion is inversely 
proportion to sinπQx,y 
- No stable orbit if tune is integer! 



Measure closed orbit 

  Distribute beam position monitors around ring. 



Control closed orbit 

  minimized the closed orbit distortion. 
  Large closed orbit distortions cause limitation on the 

physical aperture  
  Need dipole correctors and beam position monitors 

distributed around the ring 
  Assuming we have m beam position monitors and n 

dipole correctors, the response at each beam 
position monitor from the n correctors is:  

€ 

xk = βx,k βx,i
θi

2sinπQx

cos ψ(si,s0) −πQx[ ]
k=1

n

∑



Control closed orbit 

  Or, 

  To cancel the closed orbit measured at all the bpms, the 
correctors are then 

  

€ 

θ1
θ2

θn

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

= M−1( )

x1
x2

xm

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

  

€ 

x1
x2

xm

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

= M( )

θ1
θ2

θn

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 



Quadrupole errors 

  Misalignment of quadrupoles 
-  dipole-like error: kx 
-  results in closed orbit distortion 

  Gradient error: 
- Cause betatron tune shift 
-  induce beta function deviation: beta beat 



Beta beat 

  In a circular ring with a gradient error at s0, the tune shift is 
s0 

s 

€ 

M(s+ C,s) = M(s,s0)
1 0
−Δk 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ M(s0,s)

€ 

βx (s)sin2πQx = βx0(s)sin2πQx0 +

Δk βx0(s)βx0(s0)
2

[cos(2πQx0 + 2 |Δψs,s0 |)]

€ 

Δβ
β

= Δk βx0(s0)
2sin2πQx0

cos(2πQx0 + 2 |Δψs,s0 |)

Unstable betatron motion if tune is half integer! 


