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Overview

1. Chromaticity and chromatic corrections

2. Dynamic aperture

3. Energy acceptance
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Chromaticity

I Nominal lattice is calculated using nominal momentum p0.

I Particles with a momentum deviation ∆p see a different qudrupole
strength

k(p) = −e

p
g =

e

p0 + ∆p
≈ − e

p0

(
1− ∆p

p0

)
g = k0 −∆k (1)

I The effect of the momentum deviation can be treated as a
quadrupole error

∆k =
∆p

p
k0 (2)
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Chromaticity (cont’d)

I This leads to a tune change

dQ =
∆p

p

1

4π
k0β(s)ds (3)

I Integrating over all quadrupoles one gets

ξ =
∆Q
∆p
p

=
1

4π

∮
k(s)β(s)ds (4)

I This is the so-called chromaticity

I Most storage rings require chromaticity compensation
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Chromatic Corrections

I Need location where particles are “sorted” by energy, i.e. high
dispersion area

xD(s) = D(s)
∆p

p
(5)

I Use magnets where focal strength depends on offset, i.e k ∝ x
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Chromatic Corrections (cont’d)
Use sextupole magnets

Bx =
∂Φ

∂x
= g ′xy (6)

By =
∂Φ

∂y
= g ′(x2 − y2) (7)

Gradient along x and y axis:

∂By

∂x
= g ′x and

∂Bx

∂y
= g ′x ⇒ ksext =

e

p
g ′x = mx (8)

The effective quadrupole strength depends on the dispersion:

ksext = mD
∆p

p
(9)
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Chromatic Corrections (cont’d)

I To calculate the total chromaticity one needs to integrate over the
ring

ξx = − 1

4πQx

C∫
0

βx(s) (k(s)− S0(s)Dx(s)) ds (10)

ξy = +
1

4πQy

C∫
0

βy (s) (k(s)− S0(s)Dx(s)) ds (11)

I The natural chromaticity depends only on the quadrupoles

ξx0 = − 1

4πQx

C∫
0

βx(s)k(s) ds (12)

ξy0 = +
1

4πQy

C∫
0

βy (s)k(s) ds (13)
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Chromatic Corrections (cont’d)

I So we can express the total chromaticity as

ξx = ξx0 +
1

4πQx

C∫
0

βx(s)S0(s)Dx(s) ds (14)

ξy = ξy0 −
1

4πQy

C∫
0

βy (s)S0(s)Dx(s) ds (15)

I Using the thin lens approximation, this can be written as

ξx = ξx0 +
1

4πQx

N∑
i=1

βxi S0i Dxi lSi
(16)

ξy = ξy0 +
1

4πQy

N∑
i=1

βyi S0i Dxi lSi
(17)
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Chromatic Corrections (cont’d)

I Assume a correction scheme with two families of sextupoles (with
strengths S01 and S02 each with length ls inserted at locations s1 and
s2 in a cell repeated N times around the ring

I We can then solve the above system of equations and find

S01 = − 4π

NlSDx1

βy2Qxξx0 + βx2Qyξy0

βx1βy2 − βx2βy1

(18)

S02 =
4π

NlSDx2

βy1Qxξx0 + βx1Qyξy0

βx1βy2 − βx2βy1

(19)

I Conditions to minimize sextupole strengths:
I large dispersion
I large difference bewteen βx and βy at the sextupole locations
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Chromatic Corrections (cont’d)

I Most storage rings run at slightly positive chromaticity

I Storage rings usually use several families of sextupoles

I Sextupoles introduce non-linear fields which introduce
amplitude-dependent betatron oscillations

I trajectories at large amplitude can become chaotic

I preferrably distribute sextupoles
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Dynamic Aperture

I Jacques Gareyte: The dynamic aperture is the largest amplitude
below which all particles survive for the relevant number of turns.

I Important component of the acceptance of the ring (together with
the physical aperture)

I Usually specified in terms of normalised amplitude

Ax

γ
= γxx

2 + 2αxxpx + βxp
2
x (20)

I can be reduced by field errors:
I quadrupole strength errors
I nonlinear fields in wigglers
I systematic higher-order multipoles in magnets (intrinsic)
I random higher-order multipoles (errors)
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Field Errors and Dynamic Aperture

I Multipole field components are typically specified at a reference
radius from the magnet axis:

∆By + i∆Bx

|B(r0)|
=

∑
n

(bn + ian)

(
x + iy

r0

)n−1

(21)

where bn are the normal and an the skew multipole components.

I n = 1 is the dipole component, n = 2 the quadrupole and so on

I For systematic errors, the coefficients are fixed values

I For random errors they are usually an rms distribution for each
magnet type
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Field Errors and Dynamic Aperture

I The values of the coefficients an and bn depend on the magnet design
(for systematic and random errors)

I Features that influence the coefficients:
I shape of pole tips
I shape of yoke (higher symmetry helps reduce systematic errors)
I aperture (large aperture reduces multipole errors)
I length (fringe fields at end)

I Unfortunately the features that result in a good field, also result in an
expensive magnet

I Multipole errors can significantly reduce the dynamic aperture

I Robust lattice and minimizing multipole errors can help in achieving
only minimal reduction in dynamic aperture
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Calculating the Dynamic Aperture

I Simplest method is to set up a
grid of particles and track them
for the relevant number of turns

I Many tracking codes also
provide a command that finds
the dynamic aperture

I Calculate frequency map; this
provides much more information
than just the dynamic aperture

I Start with ideal machine

I For machine with random errors
typically a number of different
seeds are used
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Frequency Map Analysis

I A grid of particles is generated at an arbitrary starting point in the
ring. All angles are zero and usually the energy deviations and
longitudinal positions inside the bunch as well

I The transverse amplitudes range from zero to a value corresponding
to the desired dynamic aperture. The grid is not evenly spaced but
the amplitude of the nth particles in one plane is given by
An = Amax

√
n/N

I This grid of particles is then tracked for a number of turns

I The amplitudes of all particles are recorded each turn.

I This data is then split in two: One set for the first half of turns and
one for the second half

I Each set is then used to calculate the tune of each particle.

I The two tunes for each particle are then compared and the difference,
called the tune diffusion rate, is saved.

I The lower the diffusion rate, the more stable the particle’s trajectory.
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Frequency Map Analysis (cont’d)

Example from an early version of the ILC damping rings:

I Provides a lot more information than just the dynamic aperture

I shows which resonances a responsible for limiting dynamic aperture
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Measuring Dynamic Aperture

I There are different ways of measuring the dynamic aperture:

I Using fast kicker magnet to kick the beam to large amplitude;
Measure at which amplitude half of the beam is lost

I Increase beam emittance (e.g. by changing the rf frequency to change
the damping partition numbers) until the beam lifetime is significantly
reduced

I Both methods are not very accurate but can give at least some
approximation to the dynamic aperture

I It is also possible to measure frequency maps (although only with a
much coarser grid than in simulations)
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Energy Acceptance

I Energy acceptance determined by
I Height of RF bucket
I Off-energy beam dynamics

I The height of the RF bucket can easily be designed to be sufficient,
so we will only look at off-energy beam dynamics here.

I Important in damping rings, as injected beam coming from a linac
often has fluctuating energy.
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Off-energy beam dynamics

I Already discussed chromatic corrections

I Look at chromatic beta-functions (usually only necessary when
dealing with large energy spread)

I Dynamic aperture tends to shrink off-energy

I Look at off-energy frequency maps
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Off-energy Frequency Maps

Frequency maps for ∆p
p = −1% (left), 0% (center) and +1% (right)
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